[7平均律] [12平均律] [19平均律] [31平均律] [34平均律] [53平均律] [72平均律] [自然数|有理数|実数|無理数平均律]

53平均律と周波数

53平均律の周波数とは、初項 aa、公比 r=253=2153r=\sqrt[53]{2}=2^{\frac1{53}} で以下のように得られる。 f(k)=a,ar,ar2,ar3,,ark1=f(1)2k53 f(k) = a, ar, ar^2, ar^3, \ldots, ar^{k-1} = f(1)\cdot 2^{\frac{k}{53}} 下表は、添え字と鍵盤番号の関係を k=i534k=i-53\cdot 4、基準ピッチ f(1)f(1) を初項 aa とした場合の音階周波数表である。

番号 ii 周波数 f(k)[Hz]f(k)\mathrm{[Hz]} 音階名 f(k)/2[Hz]f(k)^{\text{♯}/2}\mathrm{[Hz]}
1 27.500 🔇 A0 27.680 🔇
2 27.862 🔇 A♯0 28.045 🔇
3 28.229 🔇 A𝄪0 28.414 🔇
4 28.600 🔇 A𝄪♯0 28.788 🔇
5 28.977 🔇 A𝄪𝄪0 29.167 🔇
6 29.358 🔇 B0 29.551 🔇
7 29.745 🔇 B♯0 29.940 🔇
8 30.136 🔇 B𝄪0 30.334 🔇
9 30.533 🔇 B𝄪♯0 30.733 🔇
10 30.935 🔇 B𝄪𝄪0 31.138 🔇
11 31.342 🔇 B𝄪𝄪♯0 31.548 🔇
12 31.755 🔇 B𝄪𝄪𝄪0 31.963 🔇
13 32.173 🔇 B𝄪𝄪𝄪♯0 32.384 🔇
14 32.596 🔇 B𝄪𝄪𝄪𝄪0 32.810 🔇
15 33.026 🔇 C1 33.242 🔇
16 33.460 🔇 C♯1 33.680 🔇
17 33.901 🔇 C𝄪1 34.123 🔇
18 34.347 🔇 C𝄪♯1 34.572 🔇
19 34.799 🔇 C𝄪𝄪1 35.028 🔇
20 35.257 🔇 C𝄪𝄪♯1 35.489 🔇
21 35.721 🔇 D1 35.956 🔇
22 36.192 🔇 D♯1 36.429 🔇
23 36.668 🔇 D𝄪1 36.909 🔇
24 37.151 🔇 D𝄪♯1 37.395 🔇
25 37.640 🔇 D𝄪𝄪1 37.887 🔇
26 38.135 🔇 D𝄪𝄪♯1 38.386 🔇
27 38.637 🔇 D𝄪𝄪𝄪1 38.891 🔇
28 39.146 🔇 E1 39.403 🔇
29 39.661 🔇 E♯1 39.922 🔇
30 40.183 🔇 E𝄪1 40.447 🔇
31 40.712 🔇 E𝄪♯1 40.980 🔇
32 41.248 🔇 E𝄪𝄪1 41.519 🔇
33 41.791 🔇 E𝄪𝄪♯1 42.066 🔇
34 42.342 🔇 E𝄪𝄪𝄪1 42.619 🔇
35 42.899 🔇 E𝄪𝄪𝄪♯1 43.180 🔇
36 43.464 🔇 E𝄪𝄪𝄪𝄪1 43.749 🔇
37 44.036 🔇 F1 44.325 🔇
38 44.615 🔇 F♯1 44.908 🔇
39 45.203 🔇 F𝄪1 45.499 🔇
40 45.798 🔇 F𝄪♯1 46.098 🔇
41 46.401 🔇 F𝄪𝄪1 46.705 🔇
42 47.012 🔇 F𝄪𝄪♯1 47.320 🔇
43 47.630 🔇 F𝄪𝄪𝄪1 47.943 🔇
44 48.257 🔇 F𝄪𝄪𝄪♯1 48.574 🔇
45 48.893 🔇 G1 49.214 🔇
46 49.536 🔇 G♯1 49.861 🔇
47 50.188 🔇 G𝄪1 50.518 🔇
48 50.849 🔇 G𝄪♯1 51.183 🔇
49 51.519 🔇 G𝄪𝄪1 51.857 🔇
50 52.197 🔇 G𝄪𝄪♯1 52.539 🔇
51 52.884 🔇 G𝄪𝄪𝄪1 53.231 🔇
52 53.580 🔇 G𝄪𝄪𝄪♯1 53.932 🔇
53 54.285 🔇 G𝄪𝄪𝄪𝄪1 54.642 🔇
54 55.000 🔇 A1 55.361 🔇
55 55.724 🔇 A♯1 56.090 🔇
56 56.458 🔇 A𝄪1 56.828 🔇
57 57.201 🔇 A𝄪♯1 57.576 🔇
58 57.954 🔇 A𝄪𝄪1 58.334 🔇
59 58.717 🔇 B1 59.102 🔇
60 59.490 🔇 B♯1 59.880 🔇
61 60.273 🔇 B𝄪1 60.668 🔇
62 61.066 🔇 B𝄪♯1 61.467 🔇
63 61.870 🔇 B𝄪𝄪1 62.276 🔇
64 62.685 🔇 B𝄪𝄪♯1 63.096 🔇
65 63.510 🔇 B𝄪𝄪𝄪1 63.926 🔇
66 64.346 🔇 B𝄪𝄪𝄪♯1 64.768 🔇
67 65.193 🔇 B𝄪𝄪𝄪𝄪1 65.621 🔇
68 66.051 🔇 C2 66.484 🔇
69 66.921 🔇 C♯2 67.360 🔇
70 67.802 🔇 C𝄪2 68.246 🔇
71 68.694 🔇 C𝄪♯2 69.145 🔇
72 69.598 🔇 C𝄪𝄪2 70.055 🔇
73 70.515 🔇 C𝄪𝄪♯2 70.977 🔇
74 71.443 🔇 D2 71.912 🔇
75 72.383 🔇 D♯2 72.858 🔇
76 73.336 🔇 D𝄪2 73.817 🔇
77 74.302 🔇 D𝄪♯2 74.789 🔇
78 75.280 🔇 D𝄪𝄪2 75.774 🔇
79 76.271 🔇 D𝄪𝄪♯2 76.771 🔇
80 77.275 🔇 D𝄪𝄪𝄪2 77.782 🔇
81 78.292 🔇 E2 78.806 🔇
82 79.323 🔇 E♯2 79.843 🔇
83 80.367 🔇 E𝄪2 80.894 🔇
84 81.425 🔇 E𝄪♯2 81.959 🔇
85 82.497 🔇 E𝄪𝄪2 83.038 🔇
86 83.583 🔇 E𝄪𝄪♯2 84.131 🔇
87 84.683 🔇 E𝄪𝄪𝄪2 85.239 🔇
88 85.798 🔇 E𝄪𝄪𝄪♯2 86.361 🔇
89 86.927 🔇 E𝄪𝄪𝄪𝄪2 87.498 🔇
90 88.072 🔇 F2 88.649 🔇
91 89.231 🔇 F♯2 89.816 🔇
92 90.406 🔇 F𝄪2 90.999 🔇
93 91.596 🔇 F𝄪♯2 92.197 🔇
94 92.802 🔇 F𝄪𝄪2 93.410 🔇
95 94.023 🔇 F𝄪𝄪♯2 94.640 🔇
96 95.261 🔇 F𝄪𝄪𝄪2 95.886 🔇
97 96.515 🔇 F𝄪𝄪𝄪♯2 97.148 🔇
98 97.785 🔇 G2 98.427 🔇
99 99.073 🔇 G♯2 99.723 🔇
100 100.377 🔇 G𝄪2 101.035 🔇
101 101.698 🔇 G𝄪♯2 102.366 🔇
102 103.037 🔇 G𝄪𝄪2 103.713 🔇
103 104.393 🔇 G𝄪𝄪♯2 105.078 🔇
104 105.768 🔇 G𝄪𝄪𝄪2 106.462 🔇
105 107.160 🔇 G𝄪𝄪𝄪♯2 107.863 🔇
106 108.571 🔇 G𝄪𝄪𝄪𝄪2 109.283 🔇
107 110.000 🔇 A2 110.722 🔇
108 111.448 🔇 A♯2 112.179 🔇
109 112.915 🔇 A𝄪2 113.656 🔇
110 114.402 🔇 A𝄪♯2 115.152 🔇
111 115.908 🔇 A𝄪𝄪2 116.668 🔇
112 117.433 🔇 B2 118.204 🔇
113 118.979 🔇 B♯2 119.760 🔇
114 120.546 🔇 B𝄪2 121.336 🔇
115 122.132 🔇 B𝄪♯2 122.934 🔇
116 123.740 🔇 B𝄪𝄪2 124.552 🔇
117 125.369 🔇 B𝄪𝄪♯2 126.192 🔇
118 127.020 🔇 B𝄪𝄪𝄪2 127.853 🔇
119 128.692 🔇 B𝄪𝄪𝄪♯2 129.536 🔇
120 130.386 🔇 B𝄪𝄪𝄪𝄪2 131.241 🔇
121 132.102 🔇 C3 132.969 🔇
122 133.841 🔇 C♯3 134.719 🔇
123 135.603 🔇 C𝄪3 136.493 🔇
124 137.388 🔇 C𝄪♯3 138.290 🔇
125 139.197 🔇 C𝄪𝄪3 140.110 🔇
126 141.029 🔇 C𝄪𝄪♯3 141.954 🔇
127 142.886 🔇 D3 143.823 🔇
128 144.767 🔇 D♯3 145.716 🔇
129 146.672 🔇 D𝄪3 147.635 🔇
130 148.603 🔇 D𝄪♯3 149.578 🔇
131 150.559 🔇 D𝄪𝄪3 151.547 🔇
132 152.541 🔇 D𝄪𝄪♯3 153.542 🔇
133 154.550 🔇 D𝄪𝄪𝄪3 155.563 🔇
134 156.584 🔇 E3 157.611 🔇
135 158.645 🔇 E♯3 159.686 🔇
136 160.734 🔇 E𝄪3 161.788 🔇
137 162.850 🔇 E𝄪♯3 163.918 🔇
138 164.993 🔇 E𝄪𝄪3 166.076 🔇
139 167.165 🔇 E𝄪𝄪♯3 168.262 🔇
140 169.366 🔇 E𝄪𝄪𝄪3 170.477 🔇
141 171.596 🔇 E𝄪𝄪𝄪♯3 172.721 🔇
142 173.855 🔇 E𝄪𝄪𝄪𝄪3 174.995 🔇
143 176.143 🔇 F3 177.299 🔇
144 178.462 🔇 F♯3 179.633 🔇
145 180.811 🔇 F𝄪3 181.997 🔇
146 183.192 🔇 F𝄪♯3 184.393 🔇
147 185.603 🔇 F𝄪𝄪3 186.821 🔇
148 188.046 🔇 F𝄪𝄪♯3 189.280 🔇
149 190.522 🔇 F𝄪𝄪𝄪3 191.772 🔇
150 193.030 🔇 F𝄪𝄪𝄪♯3 194.296 🔇
151 195.571 🔇 G3 196.854 🔇
152 198.145 🔇 G♯3 199.445 🔇
153 200.754 🔇 G𝄪3 202.071 🔇
154 203.397 🔇 G𝄪♯3 204.731 🔇
155 206.074 🔇 G𝄪𝄪3 207.426 🔇
156 208.787 🔇 G𝄪𝄪♯3 210.157 🔇
157 211.535 🔇 G𝄪𝄪𝄪3 212.923 🔇
158 214.320 🔇 G𝄪𝄪𝄪♯3 215.726 🔇
159 217.142 🔇 G𝄪𝄪𝄪𝄪3 218.566 🔇
160 220.000 🔇 A3 221.443 🔇
161 222.896 🔇 A♯3 224.358 🔇
162 225.830 🔇 A𝄪3 227.312 🔇
163 228.803 🔇 A𝄪♯3 230.304 🔇
164 231.815 🔇 A𝄪𝄪3 233.336 🔇
165 234.867 🔇 B3 236.408 🔇
166 237.959 🔇 B♯3 239.520 🔇
167 241.091 🔇 B𝄪3 242.673 🔇
168 244.265 🔇 B𝄪♯3 245.867 🔇
169 247.480 🔇 B𝄪𝄪3 249.104 🔇
170 250.738 🔇 B𝄪𝄪♯3 252.383 🔇
171 254.039 🔇 B𝄪𝄪𝄪3 255.706 🔇
172 257.383 🔇 B𝄪𝄪𝄪♯3 259.072 🔇
173 260.772 🔇 B𝄪𝄪𝄪𝄪3 262.482 🔇
174 264.204 🔇 C4 265.938 🔇
175 267.682 🔇 C♯4 269.439 🔇
176 271.206 🔇 C𝄪4 272.985 🔇
177 274.776 🔇 C𝄪♯4 276.579 🔇
178 278.394 🔇 C𝄪𝄪4 280.220 🔇
179 282.058 🔇 C𝄪𝄪♯4 283.909 🔇
180 285.771 🔇 D4 287.646 🔇
181 289.533 🔇 D♯4 291.433 🔇
182 293.345 🔇 D𝄪4 295.269 🔇
183 297.207 🔇 D𝄪♯4 299.156 🔇
184 301.119 🔇 D𝄪𝄪4 303.095 🔇
185 305.083 🔇 D𝄪𝄪♯4 307.084 🔇
186 309.099 🔇 D𝄪𝄪𝄪4 311.127 🔇
187 313.168 🔇 E4 315.223 🔇
188 317.291 🔇 E♯4 319.372 🔇
189 321.468 🔇 E𝄪4 323.577 🔇
190 325.699 🔇 E𝄪♯4 327.836 🔇
191 329.987 🔇 E𝄪𝄪4 332.152 🔇
192 334.331 🔇 E𝄪𝄪♯4 336.524 🔇
193 338.732 🔇 E𝄪𝄪𝄪4 340.954 🔇
194 343.191 🔇 E𝄪𝄪𝄪♯4 345.443 🔇
195 347.709 🔇 E𝄪𝄪𝄪𝄪4 349.990 🔇
196 352.286 🔇 F4 354.598 🔇
197 356.924 🔇 F♯4 359.266 🔇
198 361.623 🔇 F𝄪4 363.995 🔇
199 366.383 🔇 F𝄪♯4 368.787 🔇
200 371.206 🔇 F𝄪𝄪4 373.641 🔇
201 376.093 🔇 F𝄪𝄪♯4 378.560 🔇
202 381.044 🔇 F𝄪𝄪𝄪4 383.544 🔇
203 386.060 🔇 F𝄪𝄪𝄪♯4 388.593 🔇
204 391.142 🔇 G4 393.708 🔇
205 396.291 🔇 G♯4 398.891 🔇
206 401.508 🔇 G𝄪4 404.142 🔇
207 406.793 🔇 G𝄪♯4 409.462 🔇
208 412.148 🔇 G𝄪𝄪4 414.852 🔇
209 417.574 🔇 G𝄪𝄪♯4 420.313 🔇
210 423.071 🔇 G𝄪𝄪𝄪4 425.847 🔇
211 428.640 🔇 G𝄪𝄪𝄪♯4 431.452 🔇
212 434.283 🔇 G𝄪𝄪𝄪𝄪4 437.132 🔇
213 440.000 🔇 A4 442.887 🔇
214 445.792 🔇 A♯4 448.717 🔇
215 451.661 🔇 A𝄪4 454.624 🔇
216 457.606 🔇 A𝄪♯4 460.609 🔇
217 463.630 🔇 A𝄪𝄪4 466.672 🔇
218 469.734 🔇 B4 472.815 🔇
219 475.917 🔇 B♯4 479.040 🔇
220 482.182 🔇 B𝄪4 485.346 🔇
221 488.530 🔇 B𝄪♯4 491.735 🔇
222 494.961 🔇 B𝄪𝄪4 498.208 🔇
223 501.477 🔇 B𝄪𝄪♯4 504.767 🔇
224 508.078 🔇 B𝄪𝄪𝄪4 511.412 🔇
225 514.767 🔇 B𝄪𝄪𝄪♯4 518.144 🔇
226 521.543 🔇 B𝄪𝄪𝄪𝄪4 524.965 🔇
227 528.409 🔇 C5 531.875 🔇
228 535.365 🔇 C♯5 538.877 🔇
229 542.412 🔇 C𝄪5 545.971 🔇
230 549.553 🔇 C𝄪♯5 553.158 🔇
231 556.787 🔇 C𝄪𝄪5 560.440 🔇
232 564.117 🔇 C𝄪𝄪♯5 567.818 🔇
233 571.543 🔇 D5 575.293 🔇
234 579.067 🔇 D♯5 582.866 🔇
235 586.690 🔇 D𝄪5 590.539 🔇
236 594.413 🔇 D𝄪♯5 598.313 🔇
237 602.238 🔇 D𝄪𝄪5 606.189 🔇
238 610.166 🔇 D𝄪𝄪♯5 614.169 🔇
239 618.198 🔇 D𝄪𝄪𝄪5 622.254 🔇
240 626.336 🔇 E5 630.445 🔇
241 634.581 🔇 E♯5 638.745 🔇
242 642.935 🔇 E𝄪5 647.153 🔇
243 651.399 🔇 E𝄪♯5 655.672 🔇
244 659.974 🔇 E𝄪𝄪5 664.304 🔇
245 668.662 🔇 E𝄪𝄪♯5 673.049 🔇
246 677.464 🔇 E𝄪𝄪𝄪5 681.909 🔇
247 686.383 🔇 E𝄪𝄪𝄪♯5 690.886 🔇
248 695.418 🔇 E𝄪𝄪𝄪𝄪5 699.981 🔇
249 704.573 🔇 F5 709.195 🔇
250 713.848 🔇 F♯5 718.531 🔇
251 723.245 🔇 F𝄪5 727.990 🔇
252 732.766 🔇 F𝄪♯5 737.573 🔇
253 742.412 🔇 F𝄪𝄪5 747.283 🔇
254 752.185 🔇 F𝄪𝄪♯5 757.120 🔇
255 762.087 🔇 F𝄪𝄪𝄪5 767.087 🔇
256 772.120 🔇 F𝄪𝄪𝄪♯5 777.185 🔇
257 782.284 🔇 G5 787.416 🔇
258 792.582 🔇 G♯5 797.782 🔇
259 803.016 🔇 G𝄪5 808.284 🔇
260 813.587 🔇 G𝄪♯5 818.924 🔇
261 824.297 🔇 G𝄪𝄪5 829.705 🔇
262 835.148 🔇 G𝄪𝄪♯5 840.627 🔇
263 846.142 🔇 G𝄪𝄪𝄪5 851.693 🔇
264 857.281 🔇 G𝄪𝄪𝄪♯5 862.905 🔇
265 868.566 🔇 G𝄪𝄪𝄪𝄪5 874.264 🔇
266 880.000 🔇 A5 885.773 🔇
267 891.584 🔇 A♯5 897.434 🔇
268 903.321 🔇 A𝄪5 909.248 🔇
269 915.213 🔇 A𝄪♯5 921.217 🔇
270 927.261 🔇 A𝄪𝄪5 933.344 🔇
271 939.467 🔇 B5 945.631 🔇
272 951.835 🔇 B♯5 958.079 🔇
273 964.365 🔇 B𝄪5 970.692 🔇
274 977.060 🔇 B𝄪♯5 983.470 🔇
275 989.922 🔇 B𝄪𝄪5 996.416 🔇
276 1002.953 🔇 B𝄪𝄪♯5 1009.533 🔇
277 1016.156 🔇 B𝄪𝄪𝄪5 1022.823 🔇
278 1029.533 🔇 B𝄪𝄪𝄪♯5 1036.288 🔇
279 1043.086 🔇 B𝄪𝄪𝄪𝄪5 1049.929 🔇
280 1056.818 🔇 C6 1063.751 🔇
281 1070.730 🔇 C♯6 1077.754 🔇
282 1084.825 🔇 C𝄪6 1091.942 🔇
283 1099.106 🔇 C𝄪♯6 1106.316 🔇
284 1113.574 🔇 C𝄪𝄪6 1120.880 🔇
285 1128.234 🔇 C𝄪𝄪♯6 1135.636 🔇
286 1143.086 🔇 D6 1150.585 🔇
287 1158.134 🔇 D♯6 1165.732 🔇
288 1173.380 🔇 D𝄪6 1181.078 🔇
289 1188.826 🔇 D𝄪♯6 1196.625 🔇
290 1204.476 🔇 D𝄪𝄪6 1212.378 🔇
291 1220.332 🔇 D𝄪𝄪♯6 1228.338 🔇
292 1236.396 🔇 D𝄪𝄪𝄪6 1244.508 🔇
293 1252.673 🔇 E6 1260.891 🔇
294 1269.163 🔇 E♯6 1277.489 🔇
295 1285.870 🔇 E𝄪6 1294.306 🔇
296 1302.798 🔇 E𝄪♯6 1311.345 🔇
297 1319.948 🔇 E𝄪𝄪6 1328.608 🔇
298 1337.324 🔇 E𝄪𝄪♯6 1346.098 🔇
299 1354.929 🔇 E𝄪𝄪𝄪6 1363.818 🔇
300 1372.765 🔇 E𝄪𝄪𝄪♯6 1381.771 🔇
301 1390.836 🔇 E𝄪𝄪𝄪𝄪6 1399.961 🔇
302 1409.146 🔇 F6 1418.390 🔇
303 1427.696 🔇 F♯6 1437.062 🔇
304 1446.490 🔇 F𝄪6 1455.980 🔇
305 1465.532 🔇 F𝄪♯6 1475.147 🔇
306 1484.824 🔇 F𝄪𝄪6 1494.566 🔇
307 1504.371 🔇 F𝄪𝄪♯6 1514.240 🔇
308 1524.175 🔇 F𝄪𝄪𝄪6 1534.174 🔇
309 1544.239 🔇 F𝄪𝄪𝄪♯6 1554.370 🔇
310 1564.568 🔇 G6 1574.832 🔇
311 1585.164 🔇 G♯6 1595.563 🔇
312 1606.031 🔇 G𝄪6 1616.568 🔇
313 1627.173 🔇 G𝄪♯6 1637.848 🔇
314 1648.594 🔇 G𝄪𝄪6 1659.409 🔇
315 1670.296 🔇 G𝄪𝄪♯6 1681.254 🔇
316 1692.284 🔇 G𝄪𝄪𝄪6 1703.386 🔇
317 1714.561 🔇 G𝄪𝄪𝄪♯6 1725.810 🔇
318 1737.132 🔇 G𝄪𝄪𝄪𝄪6 1748.529 🔇
319 1760.000 🔇 A6 1771.547 🔇
320 1783.169 🔇 A♯6 1794.867 🔇
321 1806.643 🔇 A𝄪6 1818.495 🔇
322 1830.426 🔇 A𝄪♯6 1842.434 🔇
323 1854.522 🔇 A𝄪𝄪6 1866.688 🔇
324 1878.935 🔇 B6 1891.262 🔇
325 1903.669 🔇 B♯6 1916.159 🔇
326 1928.730 🔇 B𝄪6 1941.383 🔇
327 1954.120 🔇 B𝄪♯6 1966.940 🔇
328 1979.844 🔇 B𝄪𝄪6 1992.833 🔇
329 2005.907 🔇 B𝄪𝄪♯6 2019.067 🔇
330 2032.313 🔇 B𝄪𝄪𝄪6 2045.646 🔇
331 2059.067 🔇 B𝄪𝄪𝄪♯6 2072.575 🔇
332 2086.172 🔇 B𝄪𝄪𝄪𝄪6 2099.859 🔇
333 2113.635 🔇 C7 2127.502 🔇
334 2141.459 🔇 C♯7 2155.509 🔇
335 2169.650 🔇 C𝄪7 2183.884 🔇
336 2198.211 🔇 C𝄪♯7 2212.633 🔇
337 2227.149 🔇 C𝄪𝄪7 2241.760 🔇
338 2256.467 🔇 C𝄪𝄪♯7 2271.271 🔇
339 2286.172 🔇 D7 2301.171 🔇
340 2316.267 🔇 D♯7 2331.463 🔇
341 2346.759 🔇 D𝄪7 2362.155 🔇
342 2377.652 🔇 D𝄪♯7 2393.251 🔇
343 2408.952 🔇 D𝄪𝄪7 2424.756 🔇
344 2440.664 🔇 D𝄪𝄪♯7 2456.676 🔇
345 2472.793 🔇 D𝄪𝄪𝄪7 2489.016 🔇
346 2505.345 🔇 E7 2521.782 🔇
347 2538.326 🔇 E♯7 2554.979 🔇
348 2571.741 🔇 E𝄪7 2588.613 🔇
349 2605.596 🔇 E𝄪♯7 2622.690 🔇
350 2639.896 🔇 E𝄪𝄪7 2657.215 🔇
351 2674.648 🔇 E𝄪𝄪♯7 2692.195 🔇
352 2709.857 🔇 E𝄪𝄪𝄪7 2727.636 🔇
353 2745.530 🔇 E𝄪𝄪𝄪♯7 2763.543 🔇
354 2781.673 🔇 E𝄪𝄪𝄪𝄪7 2799.922 🔇
355 2818.291 🔇 F7 2836.781 🔇
356 2855.392 🔇 F♯7 2874.125 🔇
357 2892.980 🔇 F𝄪7 2911.960 🔇
358 2931.064 🔇 F𝄪♯7 2950.293 🔇
359 2969.649 🔇 F𝄪𝄪7 2989.132 🔇
360 3008.742 🔇 F𝄪𝄪♯7 3028.481 🔇
361 3048.349 🔇 F𝄪𝄪𝄪7 3068.348 🔇
362 3088.478 🔇 F𝄪𝄪𝄪♯7 3108.740 🔇
363 3129.135 🔇 G7 3149.664 🔇
364 3170.328 🔇 G♯7 3191.127 🔇
365 3212.062 🔇 G𝄪7 3233.135 🔇
366 3254.347 🔇 G𝄪♯7 3275.697 🔇
367 3297.187 🔇 G𝄪𝄪7 3318.819 🔇
368 3340.592 🔇 G𝄪𝄪♯7 3362.508 🔇
369 3384.568 🔇 G𝄪𝄪𝄪7 3406.773 🔇
370 3429.123 🔇 G𝄪𝄪𝄪♯7 3451.620 🔇
371 3474.264 🔇 G𝄪𝄪𝄪𝄪7 3497.057 🔇
372 3520.000 🔇 A7 3543.093 🔇
373 3566.338 🔇 A♯7 3589.735 🔇
374 3613.286 🔇 A𝄪7 3636.991 🔇
375 3660.851 🔇 A𝄪♯7 3684.869 🔇
376 3709.043 🔇 A𝄪𝄪7 3733.377 🔇
377 3757.870 🔇 B7 3782.523 🔇
378 3807.339 🔇 B♯7 3832.317 🔇
379 3857.459 🔇 B𝄪7 3882.766 🔇
380 3908.239 🔇 B𝄪♯7 3933.880 🔇
381 3959.688 🔇 B𝄪𝄪7 3985.666 🔇
382 4011.814 🔇 B𝄪𝄪♯7 4038.134 🔇
383 4064.626 🔇 B𝄪𝄪𝄪7 4091.292 🔇
384 4118.133 🔇 B𝄪𝄪𝄪♯7 4145.151 🔇
385 4172.345 🔇 B𝄪𝄪𝄪𝄪7 4199.718 🔇
386 4227.270 🔇 C8 4255.004 🔇

ここで「f(k)/2f(k)^{\text{♯}/2}」は次の音階との中間の周波数 f(k)/2=f(1)22k+1253f(k)^{\text{♯}/2} = f(1)\cdot 2^{\frac{2k+1}{2\cdot 53}} と定義。 音名はアルゴリズムにより決定した便宜的なもの。

Written by Taiji Yamada <taiji@aihara.co.jp> at 2018/7/7.