本稿は MathJax, KaTeX における数式および数式中のテキストの表現能力を確かめることを目的とし、何か完成を目的としたものではない。
また、拙作「TeX コマンド・チートシート」にて紙幅の関係で記せなかった注意事項を漏れなく書き留めておく目的もあり、それは達成されている。もっとも、より進んだ挑戦的な使い方に踏み込んだ文書が「Pages などにおける TeX コマンドのコツ」にてメモとして記してあるが、一部は現状あまり実用的ではないので注意すること。
[2021/11/30] 先ほど MathJax の拡張 mathtools, textmacros を有効にしておく決断に至った。
[2021/12/17] 先ほど KaTeX の拡張 mhchem を常に導入しておく決断に至った。
\cancel コマンド\color, \colorbox コマンド\xtwoheadrightarrow, \xtwoheadleftarrow, \xlongequal, \xmapsto, \xtofrom 及び、非公式 \Newextarrow コマンド\ce コマンド{CD} 環境\ddots と「⋰」U+22F0 の右上がり省略記号 \adots論理学の記号の定義は、数学の慣習の頼るのではなく、より厳密な定義を目指すものであるが、そもそも前置単項演算子なのか二項演算子なのかを明記していない教科書がほとんどである。計算機科学における記号の定義の方がより厳密であるので、ここでは論理学のとある教科書における定義を計算機科学での知見を参考に、より厳密に定義してみる。ここでは、参考文献「加藤 浩, 土屋 俊, 『記号論理学』, 放送大学教育振興会, 2014.」の記述をまとめる。ところで、書体に厳密でありそうでありながら P.31 微分係数に関する \(x\,\mathrm{d}x\) の d をイタリック体で表したままであったり、肝心の演習問題がなぜか本文とは異にすべてサンセリフ体になってしまっていたり、数式の慣習に精通しているとは言い難い。随所 \(\TeX\) で端的に表しておく。
(\lnot) logical not … これは前置単項演算子だと思われる。(\land) logical and … 以下は2項演算子だと思われる。
(\lor) logical or
(\to) to
(\forall) for all … 以下は前置2項演算子だと(現時点では)思われる。(\exists) exists{x, y, z, w, \ldots}{\sf a, b, c, d, \ldots}{\sf C, T, P, H, M, S, \doteq, R, L, V, W, H', S', I} 同一性述語記号 \(\doteq\) (\doteq){\cal L} … 以上のサンスセリフ体の記号のみが \({\cal L}\) に属すると思われる。{P_{t_1,\cdots,t_n}} の述語記号 \(P\)、項数 \(n\)、個体記号 \(t_1,\cdots,t_n\)\(x\in\Bbb{R}\) において。
以下を \(x\) の \(b\) 進法による表現とする。 \[ \begin{split} x &= a_0.a_1a_1\cdots a_i\cdots\\ &= a_0 + \sum_{i=1}^n\frac{a_i}{b^i} \end{split} \]
有理数であっても循環小数として無理数と同様に無限小数となる。有限小数となるのは小数部分の素因数が \(b\) の素因数であるときのみに限られる。
以下を \(x\) の正則連分数による表現と呼ぶ。 \[ x = a_0 + \cfrac1{ a_1 + \cfrac1{ a_2 + \cfrac1{ \ddots + \cfrac1{ a_i + \cfrac1{ \ddots } } } } } \] 紙幅の関係で以下のように表すこともある。 \[ x = a_0 + \frac1{a_1}{\atop +}\frac1{a_2}{\atop +\dots+}\frac1{a_i}{\atop +\dots} \] 但しここで、\(a_0\in \Bbb{Z}, a_i\in\Bbb{Z}_+\) (\(0 < i\)) であり、\(x=[a_0; a_1, \cdots]\) と表すことにする。
\(x\) が有理数であれば \(i\) は有限 \(i < n\) となり、無理数であれば \(n\to\infty\) となる。
例えば、1/2, 1/3, 1/4, 1/5, 1/6, 1/7 は 2, 3, 10 進法と連分数は以下のように表される。
| 数⧵\(n\) | \(2\) | \(3\) | \(10\) | 連分数 |
| 1/7 | \(0.\dot00\dot1_{(2)}\) | \(0.\dot01021\dot2_{(3)}\) | \(0.\dot14285\dot7_{(10)}\) | \([0; 7]\) |
| 1/6 | \(0.0\dot0\dot1_{(2)}\) | \(0.0\dot1_{(3)}\) | \(0.1\dot6_{(10)}\) | \([0; 6]\) |
| 1/5 | \(0.\dot001\dot1_{(2)}\) | \(0.\dot012\dot1_{(3)}\) | \(0.2_{(10)}\) | \([0; 5]\) |
| 1/4 | \(0.01_{(2)}\) | \(0.\dot0\dot2_{(3)}\) | \(0.25_{(10)}\) | \([0; 4]\) |
| 1/3 | \(0.\dot1\dot0_{(2)}\) | \(0.1_{(3)}\) | \(0.\dot3_{(10)}\) | \([0; 3]\) |
| 1/2 | \(0.1_{(2)}\) | \(0.\dot1_{(3)}\) | \(0.5_{(10)}\) | \([0; 2]\) |
上ドットもしくは上ドット間が循環部分を表す。
一つめ、CMS では $E = mc^2$ や $$e^{i\theta} = \cos\theta + i\sin\theta$$ のような「$」「$$」ドル記号を数式の開始・終了位置に使うのは、意図しない事態を招きかねないので避けるべきであるし、一端の LaTeX 使いもこのような数式範囲を検索しにくい記号は避けているはずである。よって、これらを設定にて無効化し、かつ、有効化しないようにすべきである。MathJax, MathJax v2, KaTeX では「$$」が既定で有効なようである。
二つめ、CMS では記事の投稿者がブラウザのコンソールに慣れているとは限らない。よって、数式に誤りがあったり、意図せず数式として識別されてしまったときに、エラーをコンソールではなくウインドウに表されていなければならない。KaTeX では既定値ではそうはならないので、throwOnError オプションを false に指定しておくことは必須となるだろう。
三つめ、CMS には WordPress のように、記事を編集した後に自動的に br タグや p タグを挿入するものも存在する。数式を LaTeX のノリで HTML に記述する場合、CMS そのものはそういった事態を想定していないので問題が生じやすい。以下の例を用いて試験環境の整備と解説を行う。
この数式を含む段落は以下のように記述されている。
見ての通り、数式のつもりの文字列の中に意図せず HTML のタグが混入してしまっている、という状況をここで用意している。
TeX と HTML の書式を混ぜたときの規則などは未定義であるし、そのようなものは物事を複雑にするだけである。よって、MathJax では HTML タグは無視して処理を行うようである(すべてのタグが無視されるわけではないようだ)。
しかし、KaTeX ではまったく異なる結果となり、結論を言えば数式が無視される。
詳しくカラクリを述べれば、HTML タグの DOM ツリーによって数式開始と数式終了の記号が別々のノードに分断され、KaTeX には数式を意図した文字列として認識されなくなるのである。
よって、以上のような、書き手には数式を意図した文字列は、なんら KaTeX のエラーも生じず、無視されるのである。
CMS に意図しない br や p タグを挿入しないように修正を施すのも一考だが、そもそも MathJax では数式内の HTML タグは無視するので、KaTeX でも同様な仕様にしてしまってもよいだろう。以下のような KaTeX の renderMathInElement のラッパー関数を用意して、それを代わりに呼び出せばよい。
function preprocessMathInElementForCMS(e)
{
/*
Note that "[\s\S]" is used instead of "." because 's' flag of the
regular expression is not supported by SeaMonkey.
*/
const ra = [
[ /<(br|\/?p)\b[^>]*?>/img, '' ],
[ /[“”]/g, '"' ],
];
e.innerHTML = e.innerHTML.replace(/\\\([\s\S]*?\\\)|\\\[[\s\S]*?\\\]/img, m=>{
ra.forEach(a=>{
m = m.replace(a[0], a[1]);
});
return m;
});
}
function renderMathInElementForCMS(e, options)
{ // requires processMathInElementForCMS.js
preprocessMathInElementForCMS(e);
renderMathInElement(e, { ...options, throwOnError: false, });
}
MathJax でもこのような方策が必要となる場面があるようである。
[2021/12/21 追記] ダブルククオートを開きと閉じダブルクオートに変換するようなこともするので、数式内ではそれを元に戻すようなことも追加した。本来なら CMS でそういったことを抑止する仕組みを導入すべきであろう。
Unicode: 𝛅𝐓 𝛿𝑇 𝜹𝑻 𝝳𝗧 𝞭𝙏 ẟ𝖳 (𝛅𝐓 𝛿𝑇 𝜹𝑻 𝝳𝗧 𝞭𝙏 ẟ𝖳)
MathJax or KaTeX: \(\displaystyle\mathit{\delta T}\ \mathrm{\delta T}\ \mathbf{\delta T}\ \mathsf{\delta T}\ \mathtt{\delta T}\ \mathcal{\delta T}\ \mathfrak{\delta T}\ \mathbb{\delta T}\)\(\mathit{\delta T}\ \mathrm{\delta T}\ \mathbf{\delta T}\ \mathsf{\delta T}\ \mathtt{\delta T}\ \mathcal{\delta T}\ \mathfrak{\delta T}\ \mathbb{\delta T}\)
Unicode in MathJax or KaTeX: \(\displaystyle \text{𝛅𝐓 𝛿𝑇 𝜹𝑻 𝝳𝗧 𝞭𝙏 ẟ𝖳}\) \(\text{𝛅𝐓 𝛿𝑇 𝜹𝑻 𝝳𝗧 𝞭𝙏 ẟ𝖳}\)
ちなみに、KaTeX ではサロゲートペアの Unicode 直接入力には問題があり、\char コマンドで回避することもできない。
KaTeX の \bm コマンドは \boldsymbol であるようで、さらに MathJax では \bm コマンドは未サポートを謳っているので、\boldsymbol のみを考慮することにする。以下に適当な例をあげておくので太字になるグリフの例として参考にされたい。
\boldsymbol\boldsymbol\boldsymbol\text 内及び \text* コマンドを MathJax と KaTeX で記しておく。
\[
\begin{array}{ll}
\text{\rm TeX の text 内の書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\rm|} \\
\text{\it TeX の text 内の書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\it|} \\
\text{\bf TeX の text 内の書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\bf|} \\
\text{\sf TeX の text 内の書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\sf|} \\
\text{\tt TeX の text 内の書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\tt|} \\
\end{array}
\]
\[
\begin{array}{ll}
\textup{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\textup|} \\
\textrm{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\textrm|} \\
\textit{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\textit|} \\
\textsl{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad\color{steelblue}{\scriptsize\verb|\textsl|} \\
\textbf{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\textbf|} \\
\textmd{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad\color{royalblue}{\scriptsize\verb|\textmd|} \\
\textsf{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\textsf|} \\
\textsc{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad\color{steelblue}{\scriptsize\verb|\textsc|} \\
\texttt{TeX の text 書体コマンド、及び、$E=mc^2$ テキスト内数式} &\qquad{\scriptsize\verb|\texttt|} \\
\end{array}
\]
実のところ \textsl, \textsc, \textmd (MathJax) は未サポートなのだが以下の定義で(欠点はあるものの)使えるようになる。但し、ブラウザと閲覧環境の依存性が高い。
% for MathJax
\newcommand{\textsc}{\style{ font-variant-caps: small-caps; }{\text{#1}}}
\newcommand{\textsl}{\style{ font-style: italic; }{\text{#1}}}
\newcommand{\textup}{\style{ font-style: normal; }{\text{#1}}}
\newcommand{\textmd}{\style{ font-weight: normal; }{\text{#1}}}
% for KaTeX
\newcommand{\textsc}{\htmlStyle{ font-variant-caps: small-caps; }{\text{#1}}}
\newcommand{\textsl}{\htmlStyle{ font-style: oblique; }{\text{#1}}}
\newcommand{\textup}{\htmlStyle{ font-style: normal; }{\text{#1}}}
\newcommand{\textmd}{\htmlStyle{ font-weight: normal; }{\text{#1}}}
それ以外は MathJax, KaTeX ともに問題はない。
MathJax と KaTeX の長さの単位は既定の設定ではまったく異なる。また、サポートされている単位も KaTeX の方が多い。ここでの例は KaTeX を標準として作成したので MathJax との違いがわかるだろう。
以下では、\(\text{–}\rule{1em}{1em}\text{—}\) \text{–}\rule{1em}{1em}\text{—} のように縦横の長さの単位指定による矩形フィルを EN ダーシと EM ダーシで挟んだ様子を、各長さ単位にて 10pt フォントサイズのもと一覧にしている。
|
mu 18 mu (18 mu = 1 em) | \( \text{–}\rule{18mu}{18mu}\text{—} \) |
em 1 em | \( \text{–}\rule{1em}{1em}\text{—} \) |
ex 2.32 ex | \( \text{–}\rule{2.32ex}{2.32ex}\text{—} \) |
|
in 10/72.27 (≒0.13837) in (1 in = 2.54 cm) | \( \text{–}\rule{0.138370001in}{0.138370001in}\text{—} \) |
cm 2.54*10/72.27 (≒0.35146) cm (0.1 cm = 1 mm) | \( \text{–}\rule{0.351459804cm}{0.351459804cm}\text{—} \) |
cc 1157*10/14856 (≒0.77881) cc (1 cc = 14856/1157 pt) | |
|
nc 107*10/1370 (≒0.78102) nc (1nc = 1370/107 pt) |
pc 10/12 (≒0.83333) pc (1 pc = 12 pt) | \( \text{–}\rule{0.833333333pc}{0.833333333pc}\text{—} \) |
mm 2.54*100/72.27 (≒3.5146) mm (1 mm = 0.1 cm) | \( \text{–}\rule{3.51459804mm}{3.51459804mm}\text{—} \) | |
|
dd 1157*10/1238 (≒9.3457) dd (1 dd = 1238/1157 pt) |
nd 642*10/685 (≒9.3723) nd (1nd = 685/642 pt) |
bp 72*10/72.27 (≒9.9626) bp (72 bp = 1 in) | |||
|
pt 10 pt (72.27 pt = 1 in) | \( \text{–}\rule{10pt}{10pt}\text{—} \) |
sp 65536*10 (=655360) sp (65536 sp = 1 pt) |
KaTeX だと相対サイズ mu, em, ex 以外の単位も CSS の font-size によってスケーリングされるとのこと(それだと絶対サイズの意味がないと思うが)。
TeX で単に \mathrm{atan} とする (\(a\mathrm{atan}x\)) と左右にアキがないので、\operatorname{atan} とするとよい。
\[
a\operatorname{atan}x
\]
しかし、名前に空白があるとき \mathrm{local min} とする (\(a\mathrm{local min}x\)) と空白が削られてしまうので、\operatorname{local\ min} とするとよい。
\[
a\operatorname{local\ min}x
\]
しかし、加えて太字にもしたいとなるとこれらは(例は示さないが)両立しないので、自前でアキを実現 \,\mathbf{local\ min}\, しなくてはならない。
\[
a\,\mathbf{local\ min}\,x
\]
よりエレガントには \mathop{\mathbf{local\ min}} とすると用途が明確で好ましい。
\[
a\mathop{\mathbf{local\ min}}x
\]
\mathopen\mathclose\mathord\mathpunct\mathinner\mathop\mathbin\mathrelMathJax の数式クラスは、アキの効果は含まないようである。KaTeX と Pages 他などは \mathpunct からアキが広くなっていく。KaTeX では \mathop の積み重ねが未サポートなので注意。
\newcommand{\operatornamewithlimits}[1]{\operatorname{#1}\limits} % for MathJax
\operatorname\operatorname\limits\operatorname\nolimits\operatornamewithlimits\operatornamewithlimits\limits\operatornamewithlimits\nolimits\mathop{\operatorname}\mathop{\operatorname}\limits\mathop{\operatorname}\nolimits\mathop{\operatornamewithlimits}\mathop{\operatornamewithlimits}\limits\mathop{\operatornamewithlimits}\nolimits一方で、MathJax では \operatornamewithlimits が未サポートであるので、上記のように \operatornamewithlimits を定義しておけば MathJax と KaTeX の両立した記述は可能である。
\Bbb{C}\setminus \Bbb{A}=\left\{a\in\Bbb{C}
\[
\newcommand{\bigmid}{\mathinner{\big|}}
\newcommand{\Bigmid}{\mathinner{\Big|}}
\newcommand{\bigggmid}{\mathinner{\bigg|}}
\newcommand{\Bigggmid}{\mathinner{\Bigg|}}
\Bbb{C}\setminus \Bbb{A}=\left\{a\in\Bbb{C}\bigmid 0\ne \forall p(x)\in\Bbb{Q}[x],\ p(a)\ne 0\right\}
\]
ここで \(\Bbb{A}\) は代数的数の集合、\(\Bbb{Q}\) は有理数係数多項式の集合。さておき、ここで使用している以下の定義が便利かと思われる。\bigmid 0\ne \forall p(x)\in\Bbb{Q}[x],\ p(a)\ne 0\right\}
\newcommand{\bigmid}{\mathinner{\big|}}
\newcommand{\Bigmid}{\mathinner{\Big|}}
\newcommand{\bigggmid}{\mathinner{\bigg|}}
\newcommand{\Bigggmid}{\mathinner{\Bigg|}}
もっとも、\left, \middle, \right コマンドの \middle が使えれば大きさ指定は以下のように不要である。
\Bbb{C}\setminus \Bbb{A}=\left\{a\in\Bbb{C}\;\middle\vert\;0\ne \forall p(x)\in\Bbb{Q}[x],\ p(a)\ne 0\right\}
\[
\Bbb{C}\setminus \Bbb{A}=\left\{a\in\Bbb{C}\;\middle\vert\;0\ne \forall p(x)\in\Bbb{Q}[x],\ p(a)\ne 0\right\}
\]
Pages 他では \middle は未サポートである。
本稿では現状、以下の例に限定しておくが、便利なコマンドが MathJax, Pages 他にはない傾向にある。よって、以下のように定義してしまおう。
%\newcommand{\stackrel}[2]{\mathrel{\overset{#1}{#2}}} % only for Pages
\newcommand{\coloneq}{\mathrel{:-}}
\newcommand{\Coloneq}{\mathrel{::-}}
\newcommand{\coloneqq}{\mathrel{:=}}
\newcommand{\Coloneqq}{\mathrel{::=}}
\newcommand{\colonsim}{\mathrel{:\sim}}
\newcommand{\Colonsim}{\mathrel{::\sim}}
\newcommand{\colonapprox}{\mathrel{:\approx}}
\newcommand{\Colonapprox}{\mathrel{::\approx}}
\newcommand{\eqcolon}{\mathrel{-:}}
\newcommand{\Eqcolon}{\mathrel{-::}}
\newcommand{\eqqcolon}{\mathrel{=:}}
\newcommand{\Eqqcolon}{\mathrel{=::}}
\newcommand{\simcolon}{\mathrel{\sim:}}
\newcommand{\Simcolon}{\mathrel{\sim::}}
\newcommand{\approxcolon}{\mathrel{\approx:}}
\newcommand{\Approxcolon}{\mathrel{\approx::}}
\[
%\newcommand{\stackrel}[2]{\mathrel{\overset{#1}{#2}}}
\begin{array}{cl|cl}
a\coloneq b &\verb|\coloneq| &
a\Coloneq b &\verb|\Coloneq| \\
a\coloneqq b &\verb|\coloneqq| &
a\Coloneqq b &\verb|\Coloneqq| \\
a\colonsim b &\verb|\colonsim| &
a\Colonsim b &\verb|\Colonsim| \\
a\colonapprox b &\verb|\colonapprox| &
a\Colonapprox b &\verb|\Colonapprox| \\
a\stackrel{\mathrm{def}}{=}b &\verb|\stackrel{\mathrm{def}}{=}| &
a\stackrel{\mathrm{m}}{=}b &\verb|\stackrel{\mathrm{m}}{=}| \\
a\eqcolon b &\verb|\eqcolon| &
a\Eqcolon b &\verb|\Eqcolon| \\
a\eqqcolon b &\verb|\eqqcolon| &
a\Eqqcolon b &\verb|\Eqqcolon| \\
a\simcolon b &\verb|\simcolon| &
a\Simcolon b &\verb|\Simcolon| \\
a\approxcolon b &\verb|\approxcolon| &
a\Approxcolon b &\verb|\Approxcolon| \\
a\stackrel{\mathrm{!}}{=}b &\verb|\stackrel\{\mathrm{!}}{=}| &
a\stackrel{\mathrm{?}}{=}b &\verb|\stackrel\{\mathrm{?}}{=}| \\
\end{array}
\]
実はこの中の
「≔」colon equals 「\(\coloneqq\)」 \coloneqq,
「≝」equal to by definition 「\(\eqdef\)」 \eqdef,
「≞」measured by 「\(\measeq\)」 \measeq,
「⩴」double colon equal 「\(\Coloneqq\)」 \Coloneqq,
「∹」excess 「\(\eqcolon\)」 \eqcolon,
「≕」equals colon 「\(\eqqcolon\)」 \eqqcolon,
「≟」questioned equal to 「\(\questeq\)」 \questeq,
などは Unicode として定義されているのだが、どのフォントのデザインもあまり美しくないのである。ゆえに需要はあるのだろう。
\stackrel は流石に MathJax, KaTeX では定義されているのでコメントアウトしてある。Pages ではそれを使えばよいだろう。
[2021/11/30] これらの一部は mathtools パッケージ由来らしく、MathJax でも使用可能。
トーシェント関数 \varphi(n)=\sum_{
\[
\varphi(n)=\sum_{\substack{1\le m\le n\\(m,n)=1}}1
\]
\substack{1\le m\le n\\(m,n)=1}}1
MathJax, KaTeX ではフォントに対する配慮は必要だが Unicode が使えるので、以下のようなことも可能である。
\newcommand{\mathvisiblespace}{\mathord{␣}}
\newcommand{\textvisiblespace}{␣}
\[
(\mathvisiblespace)\quad\text{␣: \textvisiblespace} \qquad\verb|(\mathvisiblespace)\quad\text{␣: \textvisiblespace}|
\]
MathJax では \text 内では \textvisiblespace のようなコマンド一般は展開されないので注意、むしろそのまま書けばよい。[2021/11/30] textmacros で有効になるので、極めて便利なので強くお勧めする。
Pages 他では縦方向にアキ過ぎの \underbrace について。
KaTeX では \overbrace では添字が誤る、\underbrace では上付きが印字されないので注意。もし \overbrace には下付き, \underbrace には上付きを添えたければ以下のようにした方が無難である。
Pages 他では挙動が同じ \hbox, \text について。
\hbox
\[
\left(\vcenter{\hbox{$\tfrac{\frac x y}z$}}\right),\quad
\left(\vcenter{\hbox{$\frac{\frac x y}z$}}\right),\quad
\left(\vcenter{\hbox{$\dfrac{\frac x y}z$}}\right).
\]
\text
\[
\left(\vcenter{\text{$\tfrac{\frac x y}z$}}\right),\quad
\left(\vcenter{\text{$\frac{\frac x y}z$}}\right),\quad
\left(\vcenter{\text{$\dfrac{\frac x y}z$}}\right).
\]
MathJax において \text 内は \displaystyle が既定のようだ。
Pages 他ではそもそも未対応のアクセントについて。
\[ \begin{array}{llllllllllll} \text{\'{a}} &\'{a} &\verb|\'{a}| & \text{\~{a}} &\~{a} &\verb|\~{a}| & \text{\.{a}} &\.{a} &\verb|\.{a}| & \text{\H{a}} &\H{a} &\verb|\H{a}| \\ \text{\`{a}} &\`{a} &\verb|\`{a}| & \text{\={a}} &\={a} &\verb|\={a}| & \text{\"{a}} &\"{a} &\verb|\"{a}| & \text{\v{a}} &\v{a} &\verb|\v{a}| \\ \text{\^{a}} &\^{a} &\verb|\^{a}| & \text{\u{a}} &\u{a} &\verb|\u{a}| & \text{\r{a}} &\r{a} &\verb|\r{a}| & \end{array} \]\text 内のアクセントは MathJax ではこれは未サポートである。一方で KaTeX では数式内でも有効となっている。
Pages 他では未対応の \rule[基準線の位置]{幅}{高さ}, \rule[1ex]{2em}{1ex} について。
MathJax, KaTeX ともにサポートされている。
Pages 他では未対応のフォントサイズ指定について。
MathJax では \footnotesize が効かず、KaTeX では \Tiny が効かないが、実は \sixptsize として定義されている。
{\color{Black}Black} 及び \colorbox{Black}{{\color{White}Black}} について。
\color, \colorbox については MathJax は LaTeX の色名が揃っている。
KaTeX では MathJax ともに以下の W3C カラーならば揃って定義されている。
但し、MathJax は白抜きは実現できないようなので注意。
いくつかは重複名となりえる未定義なので、別名で定義すればすむ。p という接尾辞は「積 (product)」 という意味のようで、演算子として調整されている。
\dddot, \ddddot は MathJax のみサポートで代替方法が不明につき保留。KaTeX の \newcommand によるマクロ定義では Unicode 文字列の処理の問題で実現はできないのだが、Javascript による設定で以下と同趣旨のマクロを定義すれば実現は可能である。但し、Unicode の合字の仕組みに依存するため、その品質はあまり期待できないかもしれない(末尾の一文字にしか合字されない等)。
%\newcommand{\dot}[1]{#1̇} % already defined
%\newcommand{\ddot}[1]{#1̈} % already defined
\newcommand{\dddot}[1]{#1⃛}
\newcommand{\ddddot}[1]{#1⃜}
ちなみに、KaTeX であれば以下のような書き方もでき、意味は同じである。
%\newcommand{\dot}[1]{#1\char"0308} % already defined
%\newcommand{\ddot}[1]{#1\char"0309} % already defined
\newcommand{\dddot}[1]{#1\char"20DB}
\newcommand{\ddddot}[1]{#1\char"20DC}
しかし、KaTeX では後述するように、執筆時点では Unicode 文字列サロゲートペア処理が不十分である。
以下はいずれも定義されているようだ。
\[ \begin{array}{ll} a \bmod b &\verb|a \bmod b| \\ a \mod b &\verb|a \mod b| \\ a \pmod b &\verb|a \pmod b| \\ a \pod b &\verb|a \pod b| \\ \end{array} \]x\stackrel{!}{=}y
\[
%\newcommand{\stackrel}[2]{\mathrel{\overset{#1}{#2}}}
x\stackrel{!}{=}y
\]
x\mathrel{\overset{!}{=}}y
\[
x\mathrel{\overset{!}{=}}y
\]
Pages 他では \stackrel が未サポートなので以下を再度提案しておく。
\newcommand{\stackrel}[2]{\mathrel{\overset{#1}{#2}}}
x\stackrel{!}{=}y
よく使われる関数は TeX と同様に定義済みである。稀に略語が慣習と異なるので以下のように定義してもよいだろう。
\newcommand{\cosec}{\operatorname{cosec}} % original here
\newcommand{\cotan}{\operatorname{cotan}} % original here
\newcommand{\vers}{\operatorname{vers}} % original here
\newcommand{\versin}{\operatorname{versin}} % original here
\newcommand{\covers}{\operatorname{covers}} % original here
\newcommand{\coversin}{\operatorname{coversin}} % original here
\newcommand{\sech}{\operatorname{sech}} % original here
\newcommand{\csch}{\operatorname{csch}} % original here
\newcommand{\cosech}{\operatorname{cosech}} % original here
\newcommand{\sgn}{\operatorname{sgn}} % original here
\newcommand{\rad}{\operatorname{rad}} % original here
\newcommand{\argmax}{\mathop{\mathrm{arg\ max}}}
\newcommand{\argmin}{\mathop{\mathrm{arg\ min}}}
以下に確認用に関数一覧を表示しておく。但し、末尾に詳しく再録してある。
\arccos\arcctg\arcsin\arctan\arctg\arg\ch\cos\cosec\cosech\cosh\cot\cotan\cotg\coth\covers\coversin\csc\csch\ctg\cth\deg\dim\exp\gcd\hom\inf\ker\lg\ln\log\max\min\rad\sec\sech\sgn\sh\sin\sinh\sup\tan\tanh\tg\th\vers\versin\Pr\limits_x\argmax\limits_x\argmin\limits_x\det\limits_x\gcd\limits_x\injlim\limits_x\lim\limits_x\limits_x\liminf\liminf\limsup\limits_x\plim\limits_x\projlim\limits_x\varliminf\limits_x\varlimsup\limits_x\varprojlim\limits_x\operatorname{f}\limits_x\operatorname*{f}\limits_x\operatornamewithlimits{f}\limits_x\operatornamewithlimits は MathJax では未サポートであるので注意。代わりに、\mathop{\operatorname{…}} を使えばよい。
数式モードでは、
\(
\#
\$
\%
\&
\{\}
\_
\tilde{}
\backslash
\)
は、バックスラッシュでエスケープするか、
\tilde{},
\backslash
というコマンドが必要である。
テキストモードでは、
\(
\text{
\#
\$
\%
\&
\{\}
\_
}\)
\(\text{
\textasciitilde
\textbackslash
\textasciicircum
}
\)
は、同様にバックスラッシュでエスケープするか、
\textasciitilde,
\textbackslash,
\textasciicircum
というコマンドが必要である。
しかし、MathJax ではテキストモードでのコマンドは効かずにやはり不便である。[2021/11/30] textmacros パッケージで便利になる。
MathJax, KaTeX ともに問題はない。但し、KaTeX での \overbrace, \underbrace の上付き、下付きには前述のように十分に注意すること。
MathJax, KaTeX ともに問題はない。
MathJax, KaTeX ともに問題はない。
e = 2 + \cfrac{2}{2 + \cfrac{3}{3 + \cfrac{4}{4 + \cfrac{5}{5 + \cfrac{6}{6 + \cfrac{7}{7 + \cfrac{8}{8 + \cfrac{9}{9 + \cfrac{10}{10 + \ddots}}}}}}}}}
\[
e = 2 + \cfrac{2}{2 + \cfrac{3}{3 + \cfrac{4}{4 + \cfrac{5}{5 + \cfrac{6}{6 + \cfrac{7}{7 + \cfrac{8}{8 + \cfrac{9}{9 + \cfrac{10}{10 + \ddots}}}}}}}}}
\]
これを \cfrac ではなく \dfrac にしてしまうと以下のようになる。
\[
e = 2 + \dfrac{2}{2 + \dfrac{3}{3 + \dfrac{4}{4 + \dfrac{5}{5 + \dfrac{6}{6 + \dfrac{7}{7 + \dfrac{8}{8 + \dfrac{9}{9 + \dfrac{10}{10 + \ddots}}}}}}}}}
\]
MathJax の方が意図した上下ツメになっているようである。
e = 2 + \frac{2}{2}{\atop +}\frac{3}{3}{\atop +}\frac{4}{4}{\atop +}\frac{5}{5}{\atop +}\frac{6}{6}{\atop +}\frac{7}{7}{\atop +}\frac{8}{8}{\atop +}\frac{9}{9}{\atop +}\frac{10}{10}{\atop +\cdots}紙幅の関係で以下のように表すこともある。
\[ e = 2 + \frac{2}{2}{\atop +}\frac{3}{3}{\atop +}\frac{4}{4}{\atop +}\frac{5}{5}{\atop +}\frac{6}{6}{\atop +}\frac{7}{7}{\atop +}\frac{8}{8}{\atop +}\frac{9}{9}{\atop +}\frac{10}{10}{\atop +\cdots} \]\oiint, \oiiint は MathJax は未サポート。\iiiint は KaTeX で未サポート。また、\Bbbsum 以降のすべては Unicode に存在するので本稿で独自に定義したもので、いずれにしても通常は未対応。
MathJax, KaTeX ともに問題はない。
以下の演算子も定義されている。
\[ \begin{array}{llllllll} \backepsilon &\verb|\backepsilon| & \backsim &\verb|\backsim| & \backsimeq &\verb|\backsimeq| & \because &\verb|\because| \\ \between &\verb|\between| & \bigtriangledown &\verb|\bigtriangledown| & \bigtriangleup &\verb|\bigtriangleup| & \blacktriangleleft &\verb|\blacktriangleleft| \\ \blacktriangleright &\verb|\blacktriangleright| & \bowtie &\verb|\bowtie| & \Bumpeq &\verb|\Bumpeq| & \bumpeq &\verb|\bumpeq| \\ \circeq &\verb|\circeq| & \dagger &\verb|\dagger| & \dashv &\verb|\dashv| & \ddagger &\verb|\ddagger| \\ \diamond &\verb|\diamond| & \doteqdot &\verb|\doteqdot| & \downdownarrows &\verb|\downdownarrows| & \eqcirc &\verb|\eqcirc| \\ \fallingdotseq &\verb|\fallingdotseq| & \ggg &\verb|\ggg| & \gtrapprox &\verb|\gtrapprox| & \gtrless &\verb|\gtrless| \\ \gtrsim &\verb|\gtrsim| & \Join &\verb|\Join| & \leadsto &\verb|\leadsto| & \lessapprox &\verb|\lessapprox| \\ \lessgtr &\verb|\lessgtr| & \lesssim &\verb|\lesssim| & \lll &\verb|\lll| & \models &\verb|\models| \\ \pitchfork &\verb|\pitchfork| & \restriction &\verb|\restriction| & \risingdotseq &\verb|\risingdotseq| & \shortmid &\verb|\shortmid| \\ \smallfrown &\verb|\smallfrown| & \smallsmile &\verb|\smallsmile| & \star &\verb|\star| & \therefore &\verb|\therefore| \\ \thicksim &\verb|\thicksim| & \triangleleft &\verb|\triangleleft| & \triangleright &\verb|\triangleright| & \upuparrows &\verb|\upuparrows| \\ \end{array} \]これら Unicode を添えて一部印字してみるが、
「\(\backepsilon\)」\backepsilon 「∍」small contains as member
「\(\because\)」\because 「∵」because
「\(\between\)」\between 「≬」between
「\(\bowtie, \Join\)」\bowtie, \Join 「⋈」 bowtie
「\(\Bumpeq\)」\Bumpeq 「≎」geometrically equivalent to
「\(\bumpeq\)」\bumpeq 「≏」difference between
「\(\doteqdot\)」\doteqdot 「≑」geometrically equal to
「\(\fallingdotseq\)」\fallingdotseq 「≒」approximately equal to or the image of
「\(\models\)」\models 「⊨」true
「\(\risingdotseq\)」\risingdotseq 「≓」image of or approximately equal to
「\(\shortmid\)」\shortmid 「∣」divides
「\(\smallfrown\)」\smallfrown 「⌢」frown
「\(\smallsmile\)」\smallsmile 「⌣」smile
「\(\therefore\)」\therefore 「∴」therefore
は Unicde での意味づけと TeX のコマンド名から推測される意味と、一致しているものと一致していないものがある。グリフの形状を表した説明やコマンド名なら形で判断できるが、何らかの意味づけがなされているとなると TeX と Unicode での用法が異なるものがあると混乱の元であろうが、概ね一致していると思われる。一つだけ、\backepsilon のみコマンド名にグリフのデザインが引っ張られてしまった例かもしれない。
詳しくは後述するが、まずは既定の否定演算子を列挙しておく。
\[ \begin{array}{llllllll} \not= &\verb|\not=| & \ne &\verb|\ne| & \neq &\verb|\neq| & \nsim &\verb|\nsim| \\ \ncong &\verb|\ncong| & \nvdash &\verb|\nvdash| & \nvDash &\verb|\nvDash| & \nVDash &\verb|\nVDash| \\ \nmid &\verb|\nmid| & \nparallel &\verb|\nparallel| & \nless &\verb|\nless| & \ngtr &\verb|\ngtr| \\ \nleqslant &\verb|\nleqslant| & \ngeqslant &\verb|\ngeqslant| & \lneq &\verb|\lneq| & \gneq &\verb|\gneq| \\ \nleq &\verb|\nleq| & \ngeq &\verb|\ngeq| & \nleqq &\verb|\nleqq| & \ngeqq &\verb|\ngeqq| \\ \lneqq &\verb|\lneqq| & \gneqq &\verb|\gneqq| & \lvertneqq &\verb|\lvertneqq| & \gvertneqq &\verb|\gvertneqq| \\ \lnsim &\verb|\lnsim| & \gnsim &\verb|\gnsim| & \lnapprox &\verb|\lnapprox| & \gnapprox &\verb|\gnapprox| \\ \notin &\verb|\notin| & \notni &\verb|\notni| & \nsubseteq &\verb|\nsubseteq| & \nsupseteq &\verb|\nsupseteq| \\ \subsetneq &\verb|\subsetneq| & \supsetneq &\verb|\supsetneq| & \varsubsetneq &\verb|\varsubsetneq| & \varsupsetneq &\verb|\varsupsetneq| \\ \nsubseteqq &\verb|\nsubseteqq| & \nsupseteqq &\verb|\nsupseteqq| & \subsetneqq &\verb|\subsetneqq| & \supsetneqq &\verb|\supsetneqq| \\ \varsubsetneqq &\verb|\varsubsetneqq| & \varsupsetneqq &\verb|\varsupsetneqq| & \nprec &\verb|\nprec| & \nsucc &\verb|\nsucc| \\ \npreceq &\verb|\npreceq| & \nsucceq &\verb|\nsucceq| & \precneqq &\verb|\precneqq| & \succneqq &\verb|\succneqq| \\ \precnsim &\verb|\precnsim| & \succnsim &\verb|\succnsim| & \precnapprox &\verb|\precnapprox| & \succnapprox &\verb|\succnapprox| \\ \ntriangleleft &\verb|\ntriangleleft| & \ntriangleright &\verb|\ntriangleright| & \ntrianglelefteq &\verb|\ntrianglelefteq| & \ntrianglerighteq &\verb|\ntrianglerighteq| \\ \end{array} \]\notni が MathJax ではサポートされない。しかし、演算子への否定は \not と合字されるので、以下のようにすればよい。
\newcommand{\notni}{\not\ni}
しかし、上記のように \not= が MathJax では \ne にならないので注意を要する。
MathJax, KaTeX のために以下を定義している。
\renewcommand{\P}{\mathord{¶}} % MathJax
\newcommand{\qed}{\rule{1ex}{1.5ex}}
\newcommand{\rightangle}{\mathbin{∟}}
\[
\begin{array}{llllllll}
\dots &\verb|\dots| &
\cdots &\verb|\cdots| &
\ddots &\verb|\ddots| &
\vdots &\verb|\vdots| \\
\| &\verb$\|$ &
\hbar &\verb|\hbar| &
\hslash &\verb|\hslash| &
\nabla &\verb|\nabla| \\
\partial &\verb|\partial| &
\infty &\verb|\infty| &
\emptyset &\verb|\emptyset| &
\varnothing &\verb|\varnothing| \\
\top &\verb|\top| &
\bot &\verb|\bot| &
\diagdown &\verb|\diagdown| &
\diagup &\verb|\diagup| \\
\imath &\verb|\imath| &
\jmath &\verb|\jmath| &
\Re &\verb|\Re| &
\Im &\verb|\Im| \\
\wp &\verb|\wp| &
\Finv &\verb|\Finv| &
\Game &\verb|\Game| &
\aleph &\verb|\aleph| \\
\beth &\verb|\beth| &
\gimel &\verb|\gimel| &
\daleth &\verb|\daleth| &
\rightangle &\verb|\rightangle| \\
\angle &\verb|\angle| &
\measuredangle &\verb|\measuredangle| &
\sphericalangle &\verb|\sphericalangle| &
\leftarrow &\verb|\leftarrow| \\
\rightarrow &\verb|\rightarrow| &
\leftrightarrow &\verb|\leftrightarrow| &
\uparrow &\verb|\uparrow| &
\downarrow &\verb|\downarrow| \\
\updownarrow &\verb|\updownarrow| &
\And &\verb|\And| &
\Bbb{N} &\verb|\Bbb{N}| &
\Bbb{Z} &\verb|\Bbb{Z}| \\
\Bbb{Q} &\verb|\Bbb{Q}| &
\Bbb{R} &\verb|\Bbb{R}| &
\Bbb{C} &\verb|\Bbb{C}| &
\Bbb{H} &\verb|\Bbb{H}| \\
\Bbb{O} &\verb|\Bbb{O}| &
\Bbb{S} &\verb|\Bbb{S}| &
\Bbbk &\verb|\Bbbk| &
\Gamma &\verb|\Gamma| \\
\Delta &\verb|\Delta| &
\Theta &\verb|\Theta| &
\Lambda &\verb|\Lambda| &
\Xi &\verb|\Xi| \\
\Pi &\verb|\Pi| &
\Sigma &\verb|\Sigma| &
\Upsilon &\verb|\Upsilon| &
\Phi &\verb|\Phi| \\
\Psi &\verb|\Psi| &
\Omega &\verb|\Omega| &
\alpha &\verb|\alpha| &
\beta &\verb|\beta| \\
\gamma &\verb|\gamma| &
\delta &\verb|\delta| &
\epsilon &\verb|\epsilon| &
\varepsilon &\verb|\varepsilon| \\
\zeta &\verb|\zeta| &
\eta &\verb|\eta| &
\theta &\verb|\theta| &
\vartheta &\verb|\vartheta| \\
\iota &\verb|\iota| &
\kappa &\verb|\kappa| &
\varkappa &\verb|\varkappa| &
\lambda &\verb|\lambda| \\
\mu &\verb|\mu| &
\nu &\verb|\nu| &
\xi &\verb|\xi| &
\pi &\verb|\pi| \\
\varpi &\verb|\varpi| &
\rho &\verb|\rho| &
\varrho &\verb|\varrho| &
\sigma &\verb|\sigma| \\
\varsigma &\verb|\varsigma| &
\tau &\verb|\tau| &
\upsilon &\verb|\upsilon| &
\phi &\verb|\phi| \\
\varphi &\verb|\varphi| &
\chi &\verb|\chi| &
\psi &\verb|\psi| &
\omega &\verb|\omega| \\
\digamma &\verb|\digamma| &
\omicron &\verb|\omicron| &
\mho &\verb|\mho| &
\ell &\verb|\ell| \\
\eth &\verb|\eth| &
\S &\verb|\S| &
\P &\verb|\P| &
\maltese &\verb|\maltese| \\
\checkmark &\verb|\checkmark| &
\yen &\verb|\yen| &
\Box &\verb|\Box| &
\qed &\verb|\qed| \\
\end{array}
\]
MathJax では \P が未サポート、これは頂けない。他にも多くの演算子が TeX パッケージ等で定義されているので、Symbols defined by unicode-math が参考になるだろう。
\hbar \(\hbar\) ついては \hslash \(\hslash\) が MathJax, KaTeX ともに定義されているが Pages 他にはない。Unicode としては ℎ U+210E がプランク定数であり、ℏ U+210F は換算プランク定数(ディラック定数)である。
MathJax では \medspace, \thickspace は未サポート。Pages では負の字送りが実現できていないようなので、不用意な使用は現時点では控えた方がいいだろう。
ここでは以下を追加で定義している。
\newcommand{\cosec}{\operatorname{cosec}} % original here
\newcommand{\cotan}{\operatorname{cotan}} % original here
\newcommand{\vers}{\operatorname{vers}} % original here
\newcommand{\versin}{\operatorname{versin}} % original here
\newcommand{\covers}{\operatorname{covers}} % original here
\newcommand{\coversin}{\operatorname{coversin}} % original here
\newcommand{\sech}{\operatorname{sech}} % original here
\newcommand{\csch}{\operatorname{csch}} % original here
\newcommand{\cosech}{\operatorname{cosech}} % original here
\newcommand{\sgn}{\operatorname{sgn}} % original here
\newcommand{\rad}{\operatorname{rad}} % original here
\[
\begin{aligned}
\min &\quad\hbox{最小} &\max &\quad\hbox{最大} &\gcd &\quad\hbox{最大公約数} \\
\cos &\quad\hbox{余弦関数} &\sin &\quad\hbox{正弦関数} &\tan &\quad\hbox{正接関数} \\
\csc &\quad\hbox{余割関数} &\sec &\quad\hbox{正割関数} &\cot &\quad\hbox{余接関数} \\
\cosec &\quad\hbox{〃} & & &\cotan &\quad\hbox{〃} \\
& & & &\cotg &\quad\hbox{〃} \\
& & & &\ctg &\quad\hbox{〃} \\
\coversin &\quad\hbox{余矢関数} &\versin &\quad\hbox{正矢関数} & & \\
\covers &\quad\hbox{〃} &\vers &\quad\hbox{〃} & & \\
\arccos &\quad\hbox{逆余弦関数} &\arcsin &\quad\hbox{逆正弦関数} &\arctan &\quad\hbox{逆正接関数} \\
& & & &\arctg &\quad\hbox{〃} \\
& & & &\arcctg &\quad\hbox{逆余接関数} \\
\cosh &\quad\hbox{双曲線余弦関数} &\sinh &\quad\hbox{双曲線正弦関数} &\tanh &\quad\hbox{双曲線正接関数} \\
\ch &\quad\hbox{〃} &\sh &\quad\hbox{〃} &\th &\quad\hbox{〃} \\
\csch &\quad\hbox{双曲線余割関数} &\sech &\quad\hbox{双曲線正割関数} &\coth &\quad\hbox{双曲線余接関数} \\
\cosech &\quad\hbox{〃} & & &\cth &\quad\hbox{〃} \\
\exp &\quad\hbox{指数関数} &\arg &\quad\hbox{偏角} \\
\lg &\quad\hbox{常用対数関数} &\ln &\quad\hbox{自然対数関数} &\log &\quad\hbox{対数関数} \\
\dim &\quad\hbox{次元} &\hom &\quad\hbox{準同型} &\ker &\quad\hbox{核} \\
\det &\quad\hbox{行列式} &\Pr &\quad\hbox{確率} &\sgn &\quad\hbox{符号関数} \\
\sup &\quad\hbox{上限} &\inf &\quad\hbox{下限} &\lim &\quad\hbox{極限} \\
\limsup &\quad\hbox{上極限} &\liminf &\quad\hbox{下極限} \\
\varlimsup &\quad\hbox{〃} &\varliminf &\quad\hbox{〃} \\
\injlim &\quad\hbox{帰納極限} &\projlim &\quad\hbox{射影極限} \\
\varinjlim &\quad\hbox{〃} &\varprojlim &\quad\hbox{〃} &\rad &\quad\hbox{根基} \\
\end{aligned}
\]
\(\displaystyle
\begin{matrix}
a&b\\
c&d
\end{matrix}\verb| {matrix} |
\)
\(\displaystyle
\begin{pmatrix}
a&b\\
c&d
\end{pmatrix}\verb| {pmatrix} |
\)
\(\displaystyle
\begin{vmatrix}
a&b\\
c&d
\end{vmatrix}\verb| {vmatrix} |
\)
\(\displaystyle
\begin{Vmatrix}
a&b\\
c&d
\end{Vmatrix}\verb| {Vmatrix} |
\)
\(\displaystyle
\begin{Bmatrix}
a&b\\
c&d
\end{Bmatrix}\verb| {Bmatrix} |
\)
\(\displaystyle
\begin{bmatrix}
a&b\\
c&d
\end{bmatrix}\verb| {bmatrix} |
\)
\(\displaystyle
\begin{smallmatrix}
a&b\\
c&d
\end{smallmatrix}\verb| {smallmatrix} |
\)
\(\displaystyle
x=\begin{cases}
a&\text{if }b\\
c&\text{otherwise}
\end{cases}\verb| {cases} |
\)
以下は Pages 他で未サポート。
MathJax, KaTeX ともに基本的には問題ないが、KaTeX 独自のものなのか、{matrix*} と {rcases} は MathJax で未対応 だったが mathtools パッケージの導入で対応できた。必要なら以下の定義で事足りる。
\newenvironment{rcases}{\left.\begin{array}{ll}}{\end{array}\right\}}
ここでは以下をマクロ定義している。\bra, \ket は定義済みなのでコメントアウトされている (MathJax v2 では定義)。
\newcommand{\heiko}{\mathbin{∥}}
\newcommand{\nheiko}{\mathbin{∦}}
%\newcommand{\bra}[1]{\langle #1\rvert}
%\newcommand{\ket}[1]{\lvert #1\rangle}
平行 \vec{A}\heiko\vec{B}\quad\vec{A}\nheiko\vec{B}
Schrödinger 方程式 i\hbar\frac{\mathrm d}{\mathrm dt}\ket{\psi(t)}=\hat{H}\ket{\psi(t)}
MathJax, KaTeX ともに問題ないのだが、ここで意図しているのは「平行」の記号を「日本式の斜め」にすることである。そのような対処には以下の方法がある。但し、KaTeX では trust オプションを true にする必要はある。
% for MathJax
\newcommand{\heiko}{\mathbin{\style{font-family: 'Noto Serif CJK JP', 'Yu Mincho', 'YuMincho', 'Hiragino Mincho ProN';}{\text{∥}}}}
\newcommand{\nheiko}{\mathbin{\style{font-family: 'Noto Serif CJK JP', 'Yu Mincho', 'YuMincho', 'Hiragino Mincho ProN';}{\text{∦}}}}
% for KaTeX
\newcommand{\heiko}{\mathbin{\htmlStyle{font-family: 'Noto Serif CJK JP', 'Yu Mincho', 'YuMincho', 'Hiragino Mincho ProN';}{\text{∥}}}}
\newcommand{\nheiko}{\mathbin{\htmlStyle{font-family: 'Noto Serif CJK JP', 'Yu Mincho', 'YuMincho', 'Hiragino Mincho ProN';}{\text{∦}}}}
\[
\renewcommand{\heiko}{\mathbin{\style{font-family: 'Noto Serif CJK JP', 'Yu Mincho', 'YuMincho', 'Hiragino Mincho ProN';}{\text{∥}}}}
\renewcommand{\nheiko}{\mathbin{\style{font-family: 'Noto Serif CJK JP', 'Yu Mincho', 'YuMincho', 'Hiragino Mincho ProN';}{\text{∦}}}}
\vec{A}\heiko\vec{B}\quad\vec{A}\nheiko\vec{B}
\]
多段の左側・右側の上付き・下付きの TeX の書き方は、特に左側に関して、悩まれる方はいるのでは無いだろうか。以下に纏めておくのでちょっと混乱したときの助けとしたい。
\[ \newcommand{\UCadots}{\text{⋰}} %\newcommand{\UCddots}{\text{⋱}} \begin{array}{l|ccc} \text{Command\String}&\text{Latin}&\text{Symbol}&\text{Unicode}&\\\hline {\scriptsize\verb|x^{y^{z}}|} & a^{b^c} & & a^{b^\UCadots} \\ {\scriptsize\verb|x^{y^{z^{w}}}|} & a^{b^{c^d}} & & a^{b^{c^\UCadots}} \\ {\scriptsize\verb|{}^{{}^xy}z|} & {}^{{}^ab}c & {}^{{}^{\ddots}a}b & {}^{{}^{\UCddots}a}b \\ {\scriptsize\verb|{}^{{}^{{}^xy}z}w|} & {}^{{}^{{}^ab}c}d & {}^{{}^{{}^{\ddots}a}b}c & {}^{{}^{{}^{\UCddots}a}b}c \\\hline {\scriptsize\verb|x_{y_z}|} & a_{b_c} & a_{b_{\scriptsize\mathstrut\ddots}} & a_{b_{\scriptsize\mathstrut\UCddots}} \\ {\scriptsize\verb|x_{y_{z_w}}|} & a_{b_{c_d}} & a_{b_{c_{\scriptsize\mathstrut\ddots}}} & a_{b_{c_{\scriptsize\mathstrut\UCddots}}} \\ {\scriptsize\verb|{}_{{}_xy}z|} & {}_{{}_ab}c & & {}_{{}_{\scriptsize\mathstrut\UCadots}a}b \\ {\scriptsize\verb|{}_{{}_{{}_xy}z}w|} & {}_{{}_{{}_ab}c}d & & {}_{{}_{{}_{\scriptsize\mathstrut\UCadots}a}b}c \\\hline {\scriptsize\verb|\presupsubscript{{{}^xy}}{{{}_ab}}{W^{i^j}_{p_q}}|} & \presupsubscript{{{}^xy}}{{{}_ab}}{W^{i^j}_{p_q}} & \presupsubscript{{{}^{\ddots}x}}{{{}_{\lower{1ex}{\scriptsize\mathstrut\iddots}}a}}{W^{i^{\scriptsize\mathstrut\iddots}}_{p_{\scriptsize\mathstrut\ddots}}} & \presupsubscript{{{}^{\UCddots}x}}{{{}_{\lower{1ex}{\scriptsize\mathstrut\UCadots}}a}}{W^{i^{\UCadots}}_{p_{\scriptsize\mathstrut\UCddots}}} &\\ {\scriptsize\verb|\presupsubscript{{{}^{{}^xy}z}}{{{}_{{}_ab}c}}{W^{i^{j^k}}_{p_{q_r}}}|} & \presupsubscript{{{}^{{}^xy}z}}{{{}_{{}_ab}c}}{W^{i^{j^k}}_{p_{q_r}}} & \presupsubscript{{{}^{{}^{\ddots}x}y}}{{{}_{{}_{\lower{1ex}{\scriptsize\mathstrut\iddots}}a}b}}{W^{i^{j^{\scriptsize\iddots}}}_{p_{q_{\scriptsize\mathstrut\ddots}}}} & \presupsubscript{{{}^{{}^{\UCddots}x}y}}{{{}_{{}_{\lower{1ex}{\scriptsize\mathstrut\UCadots}}a}b}}{W^{i^{j^{\UCadots}}}_{p_{q_{\scriptsize\mathstrut\UCddots}}}} & \end{array} \]下付き省略記号の前には \mathstrut コマンドを入れて不自然さを避けているが、MathJax ではそれでよいとして、KaTeX ではそれでも足りない印象ではある。
そして、左側上付き下付きをいちどきに配置するには多少工夫を要する。ここでは拙作 \presupsubscript を使用しているが、本来以下のように左側上付き下付きを右寄せにするための工夫である。
\newcommand{\presupsubscript}[3]{\phantom{{}^{#1}_{#2}}{}^{\mathllap{#1}}_{\mathllap{#2}}#3}
\[
\begin{split}
{}^\top_{(i,j)}{W}_t^{(x,y)} &\qquad{\scriptsize\verb|{}^\top_{(i,j)}{W}_t^{(x,y)}|} \\
\presupsubscript\top{(i,j)}{W}_t^{(x,y)} &\qquad{\scriptsize\verb|\presupsubscript\top{(i,j)}{W}_t^{(x,y)}|}
\end{split}
\]
mathtools パッケージには \prescript コマンドがサポートされている。
\prescript についてMathJax での閲覧環境を前提にして、この \prescript の優れたところをみてみよう。
拙作 \presupsubscript だと上付き・下付きをいちどきに配置するときは問題はないが、下付きしかない場合に下付きの \(n\) が基線から下がってしまう欠点がある。流石に私がちょっと思いついただけのマクロは敵わない。しかし、そもそも左側の上付き・下付きをいちどきに配置しようという趣旨なので使い方が間違っているとも言える。同時に、このコマンドには書きやすいとは言い難い左側の上付き・下付きを簡単に書けるという利点がある。よって、以下のマクロを用意した。
\newcommand{\presupscript}[2]{{}^{#1}#2}
\newcommand{\presubscript}[2]{{}_{#1}#2}
\[
\prescript{}n{\mathrm{C}}_k \quad \presupsubscript{}n{\mathrm{C}}_k \quad \presubscript{n}{\mathrm{C}}_k
\qquad{\scriptsize\verb|\prescript vs. \presupsubscript vs. \presubscript|}
\]
\[
\prescript{n}{}{\mathrm{C}}^k \quad \presupsubscript{n}{}{\mathrm{C}}^k \quad \presupscript{n}{\mathrm{C}}^k
\qquad{\scriptsize\verb|\prescript vs. \presupsubscript vs. \presupscript|}
\]
\[
\prescript{14}2{\mathbf{C}}^{5+}_2 \quad \presupsubscript{14}2{\mathbf{C}}^{5+}_2
\qquad{\scriptsize\verb|\prescript vs. \presupsubscript|}
\]
こういった用途の発展で tensor パッケージなるものもあるらしい。
右下がり省略記号 \ddots に対する右上がり省略記号 \iddots と \adots については後述している。
Unicode, TeX, コマンド名の順で「否定」に関する演算子を列挙する。
| \({≠}\quad \ne \qquad{\scriptsize\verb|\ne|} \) | \({≁}\quad \nsim \qquad{\scriptsize\verb|\nsim|} \) | \({≇}\quad \ncong \qquad{\scriptsize\verb|\ncong|} \) | \({⊬}\quad \nvdash \qquad{\scriptsize\verb|\nvdash|} \) |
| \({⊭}\quad \nvDash \qquad{\scriptsize\verb|\nvDash|} \) | \({⊯}\quad \nVDash \qquad{\scriptsize\verb|\nVDash|} \) | \({∤}\quad \nmid \qquad{\scriptsize\verb|\nmid|} \) | \({∦}\quad \nparallel \qquad{\scriptsize\verb|\nparallel|} \) |
| \({≮}\quad \nless \qquad{\scriptsize\verb|\nless|} \) | \({≯}\quad \ngtr \qquad{\scriptsize\verb|\ngtr|} \) | \({⪇}\quad \lneq \qquad{\scriptsize\verb|\lneq|} \) | \({⪈}\quad \gneq \qquad{\scriptsize\verb|\gneq|} \) |
| \({≰}\quad \nleq \qquad{\scriptsize\verb|\nleq|} \) | \({≱}\quad \ngeq \qquad{\scriptsize\verb|\ngeq|} \) | \({≨}\quad \lneqq \qquad{\scriptsize\verb|\lneqq|} \) | \({≩}\quad \gneqq \qquad{\scriptsize\verb|\gneqq|} \) |
| \({≨}\quad \lvertneqq \qquad{\scriptsize\verb|\lvertneqq|} \) | \({≩}\quad \gvertneqq \qquad{\scriptsize\verb|\gvertneqq|} \) | \({⋦}\quad \lnsim \qquad{\scriptsize\verb|\lnsim|} \) | \({⋧}\quad \gnsim \qquad{\scriptsize\verb|\gnsim|} \) |
| \({⪉}\quad \lnapprox \qquad{\scriptsize\verb|\lnapprox|} \) | \({⪊}\quad \gnapprox \qquad{\scriptsize\verb|\gnapprox|} \) | \({∉}\quad \notin \qquad{\scriptsize\verb|\notin|} \) | \({∌}\quad \notni \qquad{\scriptsize\verb|\notni|} \) |
| \({⊈}\quad \nsubseteq \qquad{\scriptsize\verb|\nsubseteq|} \) | \({⊉}\quad \nsupseteq \qquad{\scriptsize\verb|\nsupseteq|} \) | \({⊊}\quad \subsetneq \qquad{\scriptsize\verb|\subsetneq|} \) | \({⊋}\quad \supsetneq \qquad{\scriptsize\verb|\supsetneq|} \) |
| \({⊊}\quad \varsubsetneq \qquad{\scriptsize\verb|\varsubsetneq|} \) | \({⊋}\quad \varsupsetneq \qquad{\scriptsize\verb|\varsupsetneq|} \) | \({⫋}\quad \subsetneqq \qquad{\scriptsize\verb|\subsetneqq|} \) | \({⫌}\quad \supsetneqq \qquad{\scriptsize\verb|\supsetneqq|} \) |
| \({⫋}\quad \varsubsetneqq \qquad{\scriptsize\verb|\varsubsetneqq|} \) | \({⫌}\quad \varsupsetneqq \qquad{\scriptsize\verb|\varsupsetneqq|} \) | \({⊀}\quad \nprec \qquad{\scriptsize\verb|\nprec|} \) | \({⊁}\quad \nsucc \qquad{\scriptsize\verb|\nsucc|} \) |
| \({⪵}\quad \precneqq \qquad{\scriptsize\verb|\precneqq|} \) | \({⪶}\quad \succneqq \qquad{\scriptsize\verb|\succneqq|} \) | \({⋨}\quad \precnsim \qquad{\scriptsize\verb|\precnsim|} \) | \({⋩}\quad \succnsim \qquad{\scriptsize\verb|\succnsim|} \) |
| \({⪹}\quad \precnapprox \qquad{\scriptsize\verb|\precnapprox|} \) | \({⪺}\quad \succnapprox \qquad{\scriptsize\verb|\succnapprox|} \) | \({⋪}\quad \ntriangleleft \qquad{\scriptsize\verb|\ntriangleleft|} \) | \({⋫}\quad \ntriangleright \qquad{\scriptsize\verb|\ntriangleright|} \) |
| \({⋬}\quad \ntrianglelefteq \qquad{\scriptsize\verb|\ntrianglelefteq|} \) | \({⋭}\quad \ntrianglerighteq \qquad{\scriptsize\verb|\ntrianglerighteq|} \) | ||
| \({⩽̸}\quad \nleqslant \qquad{\scriptsize\verb|\nleqslant|} \) | \({⩾̸}\quad \ngeqslant \qquad{\scriptsize\verb|\ngeqslant|} \) | \({≦̸}\quad \nleqq \qquad{\scriptsize\verb|\nleqq|} \) | \({≧̸}\quad \ngeqq \qquad{\scriptsize\verb|\ngeqq|} \) |
| \({⫅̸}\quad \nsubseteqq \qquad{\scriptsize\verb|\nsubseteqq|} \) | \({⫆̸}\quad \nsupseteqq \qquad{\scriptsize\verb|\nsupseteqq|} \) | \({⪯̸}\quad \npreceq \qquad{\scriptsize\verb|\npreceq|} \) | \({⪰̸}\quad \nsucceq \qquad{\scriptsize\verb|\nsucceq|} \) |
表の末尾に集めておいた Unicode「⩽̸⩾̸≦̸≧̸⫅̸⫆̸⪯̸⪰̸」は KaTeX では、そのままでも \text 内でもエラーになってしまう。原因は U+0338 (combining long solidus overlay) にあるようで、\verb 内ならエラーにはならないが合字になっていない上にタイプライタ体になってしまう。MathJax にはそういった問題はないが、そもそもグリフや意味合いが異なっているものもある。つまり、TeX にあって Unicode に無いものを合字で表す際に若干の齟齬が生じている。
以下はすべて Unicode で TeX コマンド名が定義されている否定演算子である。先の例とグリフが同一に見えるもの (\UC*) もあるが、前者は TeX 由来のフォント、後者は Unicode 由来のフォントである。
| \({\lnot}\quad \lnot \qquad{\scriptsize\verb|\lnot|} \) | \({⌐}\quad \invnot \qquad{\scriptsize\verb|\invnot|} \) | \({⌙}\quad \turnednot \qquad{\scriptsize\verb|\turnednot|} \) | \({⍀}\quad \APLnotbackslash \qquad{\scriptsize\verb|\APLnotbackslash|} \) |
| \({↚}\quad \UCnleftarrow \qquad{\scriptsize\verb|\UCnleftarrow|} \) | \({↛}\quad \UCnrightarrow \qquad{\scriptsize\verb|\UCnrightarrow|} \) | \({↮}\quad \UCnleftrightarrow \qquad{\scriptsize\verb|\UCnleftrightarrow|} \) | \({⇍}\quad \UCnLeftarrow \qquad{\scriptsize\verb|\UCnLeftarrow|} \) |
| \({⇎}\quad \UCnLeftrightarrow \qquad{\scriptsize\verb|\UCnLeftrightarrow|} \) | \({⇏}\quad \UCnRightarrow \qquad{\scriptsize\verb|\UCnRightarrow|} \) | \({⇷}\quad \nvleftarrow \qquad{\scriptsize\verb|\nvleftarrow|} \) | \({⇸}\quad \nvrightarrow \qquad{\scriptsize\verb|\nvrightarrow|} \) |
| \({⇹}\quad \nvleftrightarrow \qquad{\scriptsize\verb|\nvleftrightarrow|} \) | \({⇺}\quad \nVleftarrow \qquad{\scriptsize\verb|\nVleftarrow|} \) | \({⇻}\quad \nVrightarrow \qquad{\scriptsize\verb|\nVrightarrow|} \) | \({⇼}\quad \nVleftrightarrow \qquad{\scriptsize\verb|\nVleftrightarrow|} \) |
| \({∉}\quad \UCnotin \qquad{\scriptsize\verb|\UCnotin|} \) | \({∌}\quad \nni \qquad{\scriptsize\verb|\nni|} \) | \({∤}\quad \UCnmid \qquad{\scriptsize\verb|\UCnmid|} \) | \({∦}\quad \UCnparallel \qquad{\scriptsize\verb|\UCnparallel|} \) |
| \({≁}\quad \UCnsim \qquad{\scriptsize\verb|\UCnsim|} \) | \({≄}\quad \nsime \qquad{\scriptsize\verb|\nsime|} \) | \({≄}\quad \nsimeq \qquad{\scriptsize\verb|\nsimeq|} \) | \({≇}\quad \UCncong \qquad{\scriptsize\verb|\UCncong|} \) |
| \({≉}\quad \napprox \qquad{\scriptsize\verb|\napprox|} \) | \({≠}\quad \UCne \qquad{\scriptsize\verb|\UCne|} \) | \({≢}\quad \nequiv \qquad{\scriptsize\verb|\nequiv|} \) | \({≨}\quad \UClneqq \qquad{\scriptsize\verb|\UClneqq|} \) |
| \({≩}\quad \UCgneqq \qquad{\scriptsize\verb|\UCgneqq|} \) | \({≭}\quad \nasymp \qquad{\scriptsize\verb|\nasymp|} \) | \({≮}\quad \UCnless \qquad{\scriptsize\verb|\UCnless|} \) | \({≯}\quad \UCngtr \qquad{\scriptsize\verb|\UCngtr|} \) |
| \({≰}\quad \UCnleq \qquad{\scriptsize\verb|\UCnleq|} \) | \({≱}\quad \UCngeq \qquad{\scriptsize\verb|\UCngeq|} \) | \({≴}\quad \nlesssim \qquad{\scriptsize\verb|\nlesssim|} \) | \({≵}\quad \ngtrsim \qquad{\scriptsize\verb|\ngtrsim|} \) |
| \({≸}\quad \nlessgtr \qquad{\scriptsize\verb|\nlessgtr|} \) | \({≹}\quad \ngtrless \qquad{\scriptsize\verb|\ngtrless|} \) | \({⊀}\quad \UCnprec \qquad{\scriptsize\verb|\UCnprec|} \) | \({⊁}\quad \UCnsucc \qquad{\scriptsize\verb|\UCnsucc|} \) |
| \({⊄}\quad \nsubset \qquad{\scriptsize\verb|\nsubset|} \) | \({⊅}\quad \nsupset \qquad{\scriptsize\verb|\nsupset|} \) | \({⊈}\quad \UCnsubseteq \qquad{\scriptsize\verb|\UCnsubseteq|} \) | \({⊉}\quad \UCnsupseteq \qquad{\scriptsize\verb|\UCnsupseteq|} \) |
| \({⊊}\quad \UCsubsetneq \qquad{\scriptsize\verb|\UCsubsetneq|} \) | \({⊋}\quad \UCsupsetneq \qquad{\scriptsize\verb|\UCsupsetneq|} \) | \({⊬}\quad \UCnvdash \qquad{\scriptsize\verb|\UCnvdash|} \) | \({⊭}\quad \UCnvDash \qquad{\scriptsize\verb|\UCnvDash|} \) |
| \({⊮}\quad \UCnVdash \qquad{\scriptsize\verb|\UCnVdash|} \) | \({⊯}\quad \UCnVDash \qquad{\scriptsize\verb|\UCnVDash|} \) | \({⋠}\quad \npreccurlyeq \qquad{\scriptsize\verb|\npreccurlyeq|} \) | \({⋡}\quad \nsucccurlyeq \qquad{\scriptsize\verb|\nsucccurlyeq|} \) |
| \({⋢}\quad \nsqsubseteq \qquad{\scriptsize\verb|\nsqsubseteq|} \) | \({⋣}\quad \nsqsupseteq \qquad{\scriptsize\verb|\nsqsupseteq|} \) | \({⋤}\quad \sqsubsetneq \qquad{\scriptsize\verb|\sqsubsetneq|} \) | \({⋥}\quad \sqsupsetneq \qquad{\scriptsize\verb|\sqsupsetneq|} \) |
| \({⋨}\quad \UCprecnsim \qquad{\scriptsize\verb|\UCprecnsim|} \) | \({⋩}\quad \UCsuccnsim \qquad{\scriptsize\verb|\UCsuccnsim|} \) | \({⋪}\quad \nvartriangleleft \qquad{\scriptsize\verb|\nvartriangleleft|} \) | \({⋫}\quad \nvartriangleright \qquad{\scriptsize\verb|\nvartriangleright|} \) |
| \({⌿}\quad \APLnotslash \qquad{\scriptsize\verb|\APLnotslash|} \) | \({¬}\quad \UCneg \qquad{\scriptsize\verb|\UCneg|} \) | \({⋬}\quad \UCntrianglelefteq \qquad{\scriptsize\verb|\UCntrianglelefteq|} \) | \({⋭}\quad \UCntrianglerighteq \qquad{\scriptsize\verb|\UCntrianglerighteq|} \) |
| \({⪇}\quad \UClneq \qquad{\scriptsize\verb|\UClneq|} \) | \({⪈}\quad \UCgneq \qquad{\scriptsize\verb|\UCgneq|} \) | \({⪉}\quad \UClnapprox \qquad{\scriptsize\verb|\UClnapprox|} \) | \({⪊}\quad \UCgnapprox \qquad{\scriptsize\verb|\UCgnapprox|} \) |
| \({⪱}\quad \precneq \qquad{\scriptsize\verb|\precneq|} \) | \({⪲}\quad \succneq \qquad{\scriptsize\verb|\succneq|} \) | \({⪵}\quad \UCprecneqq \qquad{\scriptsize\verb|\UCprecneqq|} \) | \({⪶}\quad \UCsuccneqq \qquad{\scriptsize\verb|\UCsuccneqq|} \) |
| \({⪹}\quad \UCprecnapprox \qquad{\scriptsize\verb|\UCprecnapprox|} \) | \({⪺}\quad \UCsuccnapprox \qquad{\scriptsize\verb|\UCsuccnapprox|} \) | \({⫋}\quad \UCsubsetneqq \qquad{\scriptsize\verb|\UCsubsetneqq|} \) | \({⫌}\quad \UCsupsetneqq \qquad{\scriptsize\verb|\UCsupsetneqq|} \) |
| \({⫝}\quad \forksnot \qquad{\scriptsize\verb|\forksnot|} \) | \({⫬}\quad \Not \qquad{\scriptsize\verb|\Not|} \) | \({⫭}\quad \bNot \qquad{\scriptsize\verb|\bNot|} \) | \({⫮}\quad \revnmid \qquad{\scriptsize\verb|\revnmid|} \) |
| \({⫲}\quad \nhpar \qquad{\scriptsize\verb|\nhpar|} \) | \({⬴}\quad \nvtwoheadleftarrow \qquad{\scriptsize\verb|\nvtwoheadleftarrow|} \) | \({⬵}\quad \nVtwoheadleftarrow \qquad{\scriptsize\verb|\nVtwoheadleftarrow|} \) | \({⬹}\quad \nvleftarrowtail \qquad{\scriptsize\verb|\nvleftarrowtail|} \) |
| \({⬺}\quad \nVleftarrowtail \qquad{\scriptsize\verb|\nVleftarrowtail|} \) | \({⬻}\quad \twoheadleftarrowtail \qquad{\scriptsize\verb|\twoheadleftarrowtail|} \) | \({⬼}\quad \nvtwoheadleftarrowtail \qquad{\scriptsize\verb|\nvtwoheadleftarrowtail|} \) | \({⬽}\quad \nVtwoheadleftarrowtail \qquad{\scriptsize\verb|\nVtwoheadleftarrowtail |} \) |
こちらは合字には無関係なので MathJax はもとより KaTeX でも特に問題はない。
\phantom は「幻影 (phantom)」で引数が存在するかのように処理するが表示はしないコマンドである。以下の例を取り上げる。
\[
\sum_{n=1}^\infty n^{-s} = \zeta(s) \qquad \sum_{n=1}^\infty\frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}
\]
\phantom は縦横のボックスの幅と高さを配置する。
\(1\) と \(s\) を \phantom にしてみる。
\[
\sum_{n=\phantom1}^\infty n^{-\phantom{s}} = \zeta(\phantom{s}) \qquad \sum_{n=\phantom1}^\infty\frac{\mu(n)}{n^{\phantom{s}}} = \frac{\phantom1}{\zeta(\phantom{s})}
\]
\hphantom は縦横のボックスの幅だけを配置する。
\(1\) と \(s\) を \hphantom にしてみる。
\[
\sum_{n=\phantom1}^\infty n^{-\hphantom{s}} = \zeta(\hphantom{s}) \qquad \sum_{n=\phantom1}^\infty\frac{\mu(n)}{n^{\hphantom{s}}} = \frac{\phantom1}{\zeta(\hphantom{s})}
\]
\vphantom は縦横のボックスの高さだけを配置する。
\(1\) と \(s\) を \vphantom にしてみる。
\[
\sum_{n=\phantom1}^\infty n^{-\vphantom{s}} = \zeta(\vphantom{s}) \qquad \sum_{n=\phantom1}^\infty\frac{\mu(n)}{n^{\vphantom{s}}} = \frac{\phantom1}{\zeta(\vphantom{s})}
\]
\smash は「スマッシュ (smash)」で引数は表示するものの、引数の幅で高さと深さが零のボックスを配置する。
\mathstrut は高さと深さが「()」と同じボックスを配置する。
\strut は「突っ張り (strut)」で高さが 8.6 pt で深さが 3pt 固定のボックスを配置する。
\smash[t] は深さは残す、\smash[b] は高さは残すボックスを配置する。
KaTeX は \smash[t] は未サポートのようである(\rule[-3pt]{0pt}{3pt} で代用可能)。
これらはベクトルや根号の屋根の高さを揃えるためによく使われる。以下の例が高さを揃えるために小技である。
\[ \vec{a} + \vec{b} \quad{\scriptsize\verb|\vec{a} + \vec{b}|} \implies \vec{\mathstrut a} + \vec{\mathstrut b} \quad{\scriptsize\verb|\vec{\mathstrut a} + \vec{\mathstrut b}|} \] \[ \sqrt{a} + \sqrt{b} \quad{\scriptsize\verb|\sqrt{a} + \sqrt{b}|} \implies \sqrt{\mathstrut a} + \sqrt{\mathstrut b} \quad{\scriptsize\verb|\sqrt{\mathstrut a} + \sqrt{\mathstrut b}|} \] \[ \sqrt{\mathstrut g} + \sqrt{\mathstrut h} \quad{\scriptsize\verb|\sqrt{\mathstrut g} + \sqrt{\mathstrut h}|} \implies \sqrt{\smash[b]{\mathstrut g}} + \sqrt{\smash[b]{\mathstrut h}} \quad{\scriptsize\verb|\sqrt{\smash[b]{\mathstrut g}} + \sqrt{\smash[b]{\mathstrut h}}|} \]
\mathllap, \mathrlap, \mathclap は「重なり (lap)」で引数は表示するものの、引数の高さと深さで幅が零のボックスを配置する。その際、
\mathllap は右寄せ、
\mathrlap は左寄せ、
\mathclap は中央揃えで表示する。以下に実用例を示す。
MathJax では要 mathtools パッケージ。
\vcenter は引数の縦方向を中央揃えで配置する。
以下の節はフォントサイズを意図して 10 pt にしてある。
MathJax の \hbox はスタイルモードを維持しない。逆に、
KaTeX の \text は数式のスタイルモードを維持しない。
MathJax の \mathmbox はスタイルモードも数式のスタイルモードも維持される。
よって、KaTeX では拙作の \mathmbox でスタイルモードも数式のスタイルモードも維持するようにした。
MathJax の \raisebox はスタイルモードを維持する。しかし、
KaTeX の \raisebox はスタイルモードを維持しない。
よって、KaTeX では拙作の \raise で MathJax の \raise と同様にスタイルモードを維持するようにした。
しかし、長さの単位 em, ex, mu がスタイルモードやフォントサイズに依存していないので使用に難が残されている。
MathJax の \fbox はスタイルモードを維持する。しかし、
KaTeX の \fbox はスタイルモードを維持しない。
よって、KaTeX では拙作の \mathfbox でスタイルモードを維持するようにした。
MathJax と KaTeX の \boxed はいずれも数式のスタイルモードを維持しない。
よって、双方とも拙作の \mathboxed で数式のスタイルモードを維持するようにした。
| 表示形式\コマンド |
x\text{y$z$}w |
x\hbox{y$z$}w |
x\mathmbox{y\text{z}}w |
x\raisebox{9mu}{y$\raisebox{.5em}{z}$}w |
x\raise{9mu}{y\raise{.5em}{z}}w |
x\lower{9mu}{y\lower{.5em}{z}}w |
x\fbox{y$z$}w |
x\mathfbox{y\text{z}}w |
x\boxed{y}w |
x\mathboxed{y\text{z}}w |
\scriptscriptstyle | \(\scriptscriptstyle x\text{y$z$}w\) | \(\scriptscriptstyle x\hbox{y$z$}w\) | \(\scriptscriptstyle x\mathmbox{y\text{z}}w\) | \(\scriptscriptstyle x\raisebox{9mu}{y$\raisebox{.5em}{z}$}w\) | \(\scriptscriptstyle x\raise{9mu}{y\raise{.5em}{z}}w\) | \(\scriptscriptstyle x\lower{9mu}{y\lower{.5em}{z}}w\) | \(\scriptscriptstyle x\fbox{y$z$}w\) | \(\scriptscriptstyle x\mathfbox{y\text{z}}w\) | \(\scriptscriptstyle x\boxed{y\text{z}}w\) | \(\scriptscriptstyle x\mathboxed{y\text{z}}w\) |
\scriptstyle | \(\scriptstyle x\text{y$z$}w\) | \(\scriptstyle x\hbox{y$z$}w\) | \(\scriptstyle x\mathmbox{y\text{z}}w\) | \(\scriptstyle x\raisebox{9mu}{y$\raisebox{.5em}{z}$}w\) | \(\scriptstyle x\raise{9mu}{y\raise{.5em}{z}}w\) | \(\scriptstyle x\lower{9mu}{y\lower{.5em}{z}}w\) | \(\scriptstyle x\fbox{y$z$}w\) | \(\scriptstyle x\mathfbox{y\text{z}}w\) | \(\scriptstyle x\boxed{y\text{z}}w\) | \(\scriptstyle x\mathboxed{y\text{z}}w\) |
\textstyle | \(\textstyle x\text{y$z$}w\) | \(\textstyle x\hbox{y$z$}w\) | \(\textstyle x\mathmbox{y\text{z}}w\) | \(\textstyle x\raisebox{9mu}{y$\raisebox{.5em}{z}$}w\) | \(\textstyle x\raise{9mu}{y\raise{.5em}{z}}w\) | \(\textstyle x\lower{9mu}{y\lower{.5em}{z}}w\) | \(\textstyle x\fbox{y$z$}w\) | \(\textstyle x\mathfbox{y\text{z}}w\) | \(\textstyle x\boxed{y\text{z}}w\) | \(\textstyle x\mathboxed{y\text{z}}w\) |
\displaystyle | \(\displaystyle x\text{y$z$}w \) | \(\displaystyle x\hbox{y$z$}w\) | \(\displaystyle x\mathmbox{y\text{z}}w\) | \(\displaystyle x\raisebox{9mu}{y$\raisebox{.5em}{z}$}w\) | \(\displaystyle x\raise{9mu}{y\raise{.5em}{z}}w\) | \(\displaystyle x\lower{9mu}{y\lower{.5em}{z}}w\) | \(\displaystyle x\fbox{y$z$}w\) | \(\displaystyle x\mathfbox{y\text{z}}w\) | \(\displaystyle x\boxed{y\text{z}}w\) | \(\displaystyle x\mathboxed{y\text{z}}w\) |
MathJax 及び KaTeX における以上の拙作のマクロ定義は以下の通り。
% for MathJax
\newcommand{\mathfbox}[1]{\mathchoice{\fbox{$\displaystyle#1$}}{\fbox{$\textstyle#1$}}{\fbox{$\scriptstyle#1$}}{\fbox{$\scriptscriptstyle#1$}}}
\newcommand{\mathboxed}[1]{\mathchoice{\boxed{\displaystyle#1}}{\boxed{\textstyle#1}}{\boxed{\scriptstyle#1}}{\boxed{\scriptscriptstyle#1}}}
\newcommand{\raisebox}[2]{\raise{#1}{\text{#2}}}
% for KaTeX
\newcommand{\mathmbox}[1]{\mathchoice{\hbox{$\displaystyle#1$}}{\hbox{$\textstyle#1$}}{\hbox{$\scriptstyle#1$}}{\hbox{$\scriptscriptstyle#1$}}}
\newcommand{\raise}[2]{\mathchoice{\raisebox{#1}{$\displaystyle#2$}}{\raisebox{#1}{$\textstyle#2$}}{\raisebox{#1}{$\scriptstyle#2$}}{\raisebox{#1}{$\scriptscriptstyle#2$}}}
\newcommand{\mathfbox}[1]{\mathchoice{\fbox{$\displaystyle#1$}}{\fbox{$\textstyle#1$}}{\fbox{$\scriptstyle#1$}}{\fbox{$\scriptscriptstyle#1$}}}
\newcommand{\mathboxed}[1]{\mathchoice{\boxed{\displaystyle#1}}{\boxed{\textstyle#1}}{\boxed{\scriptstyle#1}}{\boxed{\scriptscriptstyle#1}}}
\newcommand{\lower}[2]{\raise{-#1}{#2}}
ちなみに、\mathmakebox コマンドも MathJax には用意されているが、KaTeX には幅を持たせたボックスを用意するコマンドがないので実現は困難である。
絶対値 \(|x|\) は |x| ではなく \(\lvert x\rvert\) \lvert x\rvert とすべきである。なぜなら \(|\) (| = \vert) は括弧ではない約物だからである。\(||\) (|| = \Vert) も同様である。
面倒なら以下のようにマクロにしておくと、さらに伸縮性も備えて便利である。但し、高さが低くなり過ぎないように \mathstrut を挿入しておくことにした。
\newcommand{\abs}[1]{\left\lvert\mathstrut#1\right\rvert}
\newcommand{\norm}[1]{\left\lVert\mathstrut#1\right\rVert}
\[
\abs{x} \quad{\scriptsize\verb|\abs{x}|} \qquad \abs{\begin{matrix}1&0\\0&1\end{matrix}} \quad{\scriptsize\verb|\abs{\begin{matrix}1&0\\0&1\end{matrix}}|}
\]
\[
\norm{x} \quad{\scriptsize\verb|\norm{x}|} \qquad \norm{\begin{matrix}1&0\\0&1\end{matrix}} \quad{\scriptsize\verb|\norm{\begin{matrix}1&0\\0&1\end{matrix}}|}
\]
このように伸縮性のある(か否かは問わず \left, \right, \middle を前置可能な)開き括弧・閉じ括弧とその他区切りを以下にあげておく。
MathJax, KaTeX 互いに未サポートがあるが、MathJax では \backslash があるのに \mathslash がない。
水平方向に伸縮可能な矢印は以下の通りである。
\[ \xleftarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xleftarrow[a\cdots b]{x\cdots y}|} \qquad \xrightarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xrightarrow[a\cdots b]{x\cdots y}|} \] \[ \xtwoheadleftarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xtwoheadleftarrow[a\cdots b]{x\cdots y}|} \qquad \xtwoheadrightarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xtwoheadrightarrow[a\cdots b]{x\cdots y}|} \] \[ \xlongequal[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xlongequal[a\cdots b]{x\cdots y}|} \] \[ \xLeftarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xLeftarrow[a\cdots b]{x\cdots y}|} \qquad \xRightarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xRightarrow[a\cdots b]{x\cdots y}|} \qquad \xLeftrightarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xLeftrightarrow[a\cdots b]{x\cdots y}|} \] \[ \xhookleftarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xhookleftarrow[a\cdots b]{x\cdots y}|} \qquad \xhookrightarrow[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xhookrightarrow[a\cdots b]{x\cdots y}|} \] \[ \xleftharpoonup[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xleftharpoonup[a\cdots b]{x\cdots y}|} \qquad \xrightharpoonup[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xrightharpoonup[a\cdots b]{x\cdots y}|} \] \[ \xleftharpoondown[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xleftharpoondown[a\cdots b]{x\cdots y}|} \qquad \xrightharpoondown[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xrightharpoondown[a\cdots b]{x\cdots y}|} \] \[ \xleftrightharpoons[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xleftrightharpoons[a\cdots b]{x\cdots y}|} \qquad \xrightleftharpoons[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xrightleftharpoons[a\cdots b]{x\cdots y}|} \] \[ {\color{gray}{\scriptsize\text{unabailable}}}\quad{\scriptsize\verb|\xmapsfrom[a\cdots b]{x\cdots y}|} \qquad \xmapsto[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xmapsto[a\cdots b]{x\cdots y}|} \] \[ {\color{gray}{\scriptsize\text{unabailable}}}\quad{\scriptsize\verb|\xfromto[a\cdots b]{x\cdots y}|} \qquad \xtofrom[a\cdots b]{x\cdots y}\quad{\scriptsize\verb|\xtofrom[a\cdots b]{x\cdots y}|} \]MathJax と比べて KaTeX が既定で大変充実しているが、MathJax に mathtools パッケージを拡張することでかなり補うことができる。
以下は TeX コマンド名による矢印である。
\[ \begin{matrix} \gets&\to&\implies&\mapsto&\longmapsto&\leadsto&\restriction&\iff\\ {\scriptsize\verb|\gets|}&{\scriptsize\verb|\to|}&{\scriptsize\verb|\implies|}&{\scriptsize\verb|\mapsto|}&{\scriptsize\verb|\longmapsto|}&{\scriptsize\verb|\leadsto|}&{\scriptsize\verb|\restriction|}&{\scriptsize\verb|\iff|}\\ \leftharpoondown&\leftharpoonup&\rightharpoondown&\rightharpoonup&\downharpoonleft&\downharpoonright&\upharpoonleft&\upharpoonright\\ {\scriptsize\verb|\leftharpoondown|}&{\scriptsize\verb|\leftharpoonup|}&{\scriptsize\verb|\rightharpoondown|}&{\scriptsize\verb|\rightharpoonup|}&{\scriptsize\verb|\downharpoonleft|}&{\scriptsize\verb|\downharpoonright|}&{\scriptsize\verb|\upharpoonleft|}&{\scriptsize\verb|\upharpoonright|}\\ \leftarrow&\leftrightarrow&\rightarrow&\downarrow&\updownarrow&\uparrow&\swarrow&\searrow&\nwarrow&\nearrow\\ {\scriptsize\verb|\leftarrow|}&{\scriptsize\verb|\leftrightarrow|}&{\scriptsize\verb|\rightarrow|}&{\scriptsize\verb|\downarrow|}&{\scriptsize\verb|\updownarrow|}&{\scriptsize\verb|\uparrow|}&{\scriptsize\verb|\swarrow|}&{\scriptsize\verb|\searrow|}&{\scriptsize\verb|\nwarrow|}&{\scriptsize\verb|\nearrow|}\\ \leftleftarrows&\leftrightarrows&\rightrightarrows&\rightleftarrows&\downdownarrows&\upuparrows\\ {\scriptsize\verb|\leftleftarrows|}&{\scriptsize\verb|\leftrightarrows|}&{\scriptsize\verb|\rightrightarrows|}&{\scriptsize\verb|\rightleftarrows|}&{\scriptsize\verb|\downdownarrows|}&{\scriptsize\verb|\upuparrows|}\\ \Leftarrow&\Leftrightarrow&\Rightarrow&\Downarrow&\Updownarrow&\Uparrow\\ {\scriptsize\verb|\Leftarrow|}&{\scriptsize\verb|\Leftrightarrow|}&{\scriptsize\verb|\Rightarrow|}&{\scriptsize\verb|\Downarrow|}&{\scriptsize\verb|\Updownarrow|}&{\scriptsize\verb|\Uparrow|}\\ \longleftarrow&\longleftrightarrow&\longrightarrow&& \Longleftarrow&\Longleftrightarrow&\Longrightarrow\\ {\scriptsize\verb|\longleftarrow|}&{\scriptsize\verb|\longleftrightarrow|}&{\scriptsize\verb|\longrightarrow|}&& {\scriptsize\verb|\Longleftarrow|}&{\scriptsize\verb|\Longleftrightarrow|}&{\scriptsize\verb|\Longrightarrow|}\\ \nleftarrow&\nleftrightarrow&\nrightarrow&& \nLeftarrow&\nLeftrightarrow&\nRightarrow\\ {\scriptsize\verb|\nleftarrow|}&{\scriptsize\verb|\nleftrightarrow|}&{\scriptsize\verb|\nrightarrow|}&& {\scriptsize\verb|\nLeftarrow|}&{\scriptsize\verb|\nLeftrightarrow|}&{\scriptsize\verb|\nRightarrow|}\\ \leftarrowtail&\rightarrowtail& \leftrightsquigarrow&\rightsquigarrow& \leftrightharpoons&\rightleftharpoons& \Lsh&\Rsh\\ {\scriptsize\verb|\leftarrowtail|}&{\scriptsize\verb|\rightarrowtail|}& {\scriptsize\verb|\leftrightsquigarrow|}&{\scriptsize\verb|\rightsquigarrow|}& {\scriptsize\verb|\leftrightharpoons|}&{\scriptsize\verb|\rightleftharpoons|}& {\scriptsize\verb|\Lsh|}&{\scriptsize\verb|\Rsh|}\\ \circlearrowleft&\circlearrowright& \curvearrowleft&\curvearrowright& \dashleftarrow&\dashrightarrow& \hookleftarrow&\hookrightarrow\\ {\scriptsize\verb|\circlearrowleft|}&{\scriptsize\verb|\circlearrowright|}& {\scriptsize\verb|\curvearrowleft|}&{\scriptsize\verb|\curvearrowright|}& {\scriptsize\verb|\dashleftarrow|}&{\scriptsize\verb|\dashrightarrow|}& {\scriptsize\verb|\hookleftarrow|}&{\scriptsize\verb|\hookrightarrow|}\\ \looparrowleft&\looparrowright& \twoheadleftarrow&\twoheadrightarrow& \Lleftarrow&\Rrightarrow\\ {\scriptsize\verb|\looparrowleft|}&{\scriptsize\verb|\looparrowright|}& {\scriptsize\verb|\twoheadleftarrow|}&{\scriptsize\verb|\twoheadrightarrow|}& {\scriptsize\verb|\Lleftarrow|}&{\scriptsize\verb|\Rrightarrow|}\\ \end{matrix} \]MathJax と KaTeX で装備されているフォントには違いがある。以下に表示しておこう。
\[ \begin{array}{rl} \verb|\mathcal: |&\mathcal{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathbb: |&\mathbb{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathtt: |&\mathtt{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathfrak: |&\mathfrak{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathit: |&\mathit{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathrm: |&\mathrm{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathbf: |&\mathbf{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \verb|\mathsf: |&\mathsf{ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz }\\ \end{array} \]MathJax の方が充実していることが、小文字の対応済みの様子でわかる。
他にも多くの演算子が TeX パッケージ等で定義されているので、Symbols defined by unicode-math が参考になるだろう。いくつか定義しておく。
\newcommand{\curvearrowleftplus}{\mathbin{⤽}}
\newcommand{\doubleplus}{\mathbin{⧺}}
\newcommand{\tripleplus}{\mathbin{⧻}}
\newcommand{\triangleplus}{\mathbin{⨹}}
\newcommand{\subsetplus}{\mathbin{⪿}}
\newcommand{\supsetplus}{\mathbin{⫀}}
\newcommand{\dotminus}{\mathbin{∸}}
\newcommand{\curvearrowrightminus}{\mathbin{⤼}}
\newcommand{\commaminus}{\mathbin{⨩}}
\newcommand{\minusdot}{\mathbin{⨪}}
\newcommand{\minusfdots}{\mathbin{⨫}}
\newcommand{\minusrdots}{\mathbin{⨬}}
\newcommand{\triangleminus}{\mathbin{⨺}}
\newcommand{\uminus}{\mathbin{⩁}}
\newcommand{\simminussim}{\mathbin{⩬}}
\newcommand{\lozengeminus}{\mathbin{⟠}}
\newcommand{\lftimes}{\mathbin{⧔}}
\newcommand{\rftimes}{\mathbin{⧕}}
\newcommand{\btimes}{\mathbin{⨲}}
\newcommand{\shuffle}{\mathbin{⧢}}
\newcommand{\intprod}{\mathbin{⨼}}
\newcommand{\intprodr}{\mathbin{⨽}}
\newcommand{\smashtimes}{\mathbin{⨳}}
\newcommand{\closedvarcupsmashprod}{\mathbin{⩐}}
\newcommand{\dottimes}{\mathbin{⨰}}
\newcommand{\timesbar}{\mathbin{⨱}}
\newcommand{\triangletimes}{\mathbin{⨻}}
\newcommand{\submult}{\mathbin{⫁}}
\newcommand{\supmult}{\mathbin{⫂}}
\newcommand{\obot}{\mathbin{⦺}}
\newcommand{\odotslashdot}{\mathbin{⦼}}
\newcommand{\odiv}{\mathbin{⨸}}
\[
\begin{array}{llllllll}
A\curvearrowleftplus B &\verb|\curvearrowleftplus| &
A\doubleplus B &\verb|\doubleplus| &
A\tripleplus B &\verb|\tripleplus| &
A\triangleplus B &\verb|\triangleplus| \\
A\subsetplus B &\verb|\subsetplus| &
A\supsetplus B &\verb|\supsetplus| &
&\\
A\dotminus B &\verb|\dotminus| &
A\curvearrowrightminus B &\verb|\curvearrowrightminus| &
A\commaminus B &\verb|\commaminus| &
A\minusdot B &\verb|\minusdot| \\
A\minusfdots B &\verb|\minusfdots| &
A\minusrdots B &\verb|\minusrdots| &
A\triangleminus B &\verb|\triangleminus| &
A\uminus B &\verb|\uminus| \\
A\simminussim B &\verb|\simminussim| &
A\lozengeminus B &\verb|\lozengeminus| &
&\\
A\lftimes B &\verb|\lftimes| &
A\rftimes B &\verb|\rftimes| &
A\shuffle B &\verb|\shuffle| &
A\btimes B &\verb|\btimes| \\
A\smashtimes B &\verb|\smashtimes| &
A\intprod B &\verb|\intprod| &
A\intprodr B &\verb|\intprodr| &
A\closedvarcupsmashprod B &\verb|\closedvarcupsmashprod| \\
A\dottimes B &\verb|\dottimes| &
A\timesbar B &\verb|\timesbar| &
A\triangletimes B &\verb|\triangletimes| \\
A\submult B &\verb|\submult| &
A\supmult B &\verb|\supmult| &
&\\
A\obot B &\verb|\obot| &
A\odotslashdot B &\verb|\odotslashdot| &
A\odiv B &\verb|\odiv| \\
\end{array}
\]
\overbracket, \underbracket\overparen, \underparen\overbrace, \underbraceMathJax では \*group は未サポート。KaTeX では \*bracket は未サポート。
これらはレイアウトは別として Unicode でコードポイントに割り当てられているので、一応コマンド名を付けておいた。
U+023B4 ⎴ \(\UCoverbracket\) \UCoverbracket top square bracketU+023B5 ⎵ \(\UCunderbracket\) \UCunderbracket bottom square bracketU+023DC ⏜ \(\UCoverparen\) \UCoverparen top parenthesis (mathematical use)U+023DD ⏝ \(\UCunderparen\) \UCunderparen bottom parenthesis (mathematical use)U+023DE ⏞ \(\UCoverbrace\) \UCoverbrace top curly bracket (mathematical use)U+023DF ⏟ \(\UCunderbrace\) \UCunderbrace bottom curly bracket (mathematical use)U+023E0 ⏠ \(\UCoverrbrbraket\) \UCoverrbrbraket top tortoise shell bracket (mathematical use)U+023E1 ⏡ \(\UCunderrbrbraket\) \UCunderrbrbraket bottom tortoise shell bracket (mathematical use)これは理屈の上では、Unicode の合字を使えば TeX のコマンドとして実現可能であるが、合字の結果をみると、KaTeX ではなぜか所々成功しない。これは現時点で謎である。KaTeX サポートの \char コマンドで回避できることが判り、サロゲートペア以外の Unicode 問題は解決したと思われる。品質はどうあれとにかく、以下の合字のコマンド名をすべて TeX の命名慣習に倣って定義しておいた。
U+00300 𝑥̀ 𝐶̀ grave accentU+00301 𝑥́ 𝐶́ acute accentU+00302 𝑥̂ 𝐶̂ circumflexU+00303 𝑥̃ 𝐶̃ tildeU+00304 𝑥̄ 𝐶̄ macronU+00305 𝑥̅ 𝐶̅ overlineU+00306 𝑥̆ 𝐶̆ breveU+00307 𝑥̇ 𝐶̇ dot aboveU+00308 𝑥̈ 𝐶̈ diaeresisU+00309 𝑥̉ 𝐶̉ hook aboveU+0030A 𝑥̊ 𝐶̊ ring aboveU+0030B 𝑥̋ 𝐶̋ double acuteU+0030C 𝑥̌ 𝐶̌ caronU+0030D 𝑥̍ 𝐶̍ vertical line aboveU+0030E 𝑥̎ 𝐶̎ double vertical line aboveU+0030F 𝑥̏ 𝐶̏ double graveU+00310 𝑥̐ 𝐶̐ candrabinduU+00311 𝑥̑ 𝐶̑ inverted breveU+00312 𝑥̒ 𝐶̒ turned comma aboveU+00313 𝑥̓ 𝐶̓ comma aboveU+00314 𝑥̔ 𝐶̔ reversed commaU+00315 𝑥̕ 𝐶̕ comma above rightU+00316 𝑥̖ 𝐶̖ grave accent belowU+00317 𝑥̗ 𝐶̗ acute accent belowU+00318 𝑥̘ 𝐶̘ left tack belowU+00319 𝑥̙ 𝐶̙ right tack belowU+0031A 𝑥̚ 𝐶̚ left angle aboveU+0031B 𝑥̛ 𝐶̛ hornU+0031C 𝑥̜ 𝐶̜ left half ring belowU+0031D 𝑥̝ 𝐶̝ up tack belowU+0031E 𝑥̞ 𝐶̞ down tack belowU+0031F 𝑥̟ 𝐶̟ plus sign belowU+00320 𝑥̠ 𝐶̠ minus sign belowU+00321 𝑥̡ 𝐶̡ palatalized hook belowU+00322 𝑥̢ 𝐶̢ retroflex hook belowU+00323 𝑥̣ 𝐶̣ dot belowU+00324 𝑥̤ 𝐶̤ diaeresis belowU+00325 𝑥̥ 𝐶̥ ring belowU+00326 𝑥̦ 𝐶̦ comma belowU+00327 𝑥̧ 𝐶̧ cedillaU+00328 𝑥̨ 𝐶̨ ogonekU+00329 𝑥̩ 𝐶̩ vertical line belowU+0032A 𝑥̪ 𝐶̪ bridge belowU+0032B 𝑥̫ 𝐶̫ inverted double arch belowU+0032C 𝑥̬ 𝐶̬ caron belowU+0032D 𝑥̭ 𝐶̭ circumflex accent belowU+0032E 𝑥̮ 𝐶̮ breve belowU+0032F 𝑥̯ 𝐶̯ inverted breve belowU+00330 𝑥̰ 𝐶̰ tilde belowU+00331 𝑥̱ 𝐶̱ macron belowU+00332 𝑥̲ 𝐶̲ low lineU+00333 𝑥̳ 𝐶̳ double low lineU+00334 𝑥̴ 𝐶̴ tilde overlayU+00335 𝑥̵ 𝐶̵ short stroke overlayU+00336 𝑥̶ 𝐶̶ long stroke overlayU+00337 𝑥̷ 𝐶̷ short solidus overlayU+00338 𝑥̸ 𝐶̸ long solidus overlayU+00339 𝑥̹ 𝐶̹ right half ring belowU+0033A 𝑥̺ 𝐶̺ inverted bridge belowU+0033B 𝑥̻ 𝐶̻ square belowU+0033C 𝑥̼ 𝐶̼ seagull belowU+0033D 𝑥̽ 𝐶̽ x aboveU+0033E 𝑥̾ 𝐶̾ vertical tildeU+0033F 𝑥̿ 𝐶̿ double overlineU+00340 𝑥̀ 𝐶̀ grave tone markU+00341 𝑥́ 𝐶́ acute tone markU+00342 𝑥͂ 𝐶͂ greek perispomeniU+00343 𝑥̓ 𝐶̓ greek koronisU+00344 𝑥̈́ 𝐶̈́ greek dialytika tonosU+00345 𝑥ͅ 𝐶ͅ greek ypogegrammeniU+00346 𝑥͆ 𝐶͆ bridge aboveU+00347 𝑥͇ 𝐶͇ equals sign belowU+00348 𝑥͈ 𝐶͈ double vertical line belowU+00349 𝑥͉ 𝐶͉ left angle belowU+0034A 𝑥͊ 𝐶͊ not tilde aboveU+0034B 𝑥͋ 𝐶͋ homothetic aboveU+0034C 𝑥͌ 𝐶͌ almost equal to aboveU+0034D 𝑥͍ 𝐶͍ left right arrow belowU+0034E 𝑥͎ 𝐶͎ upwards arrow belowU+00350 𝑥͐ 𝐶͐ right arrowhead aboveU+00351 𝑥͑ 𝐶͑ left half ring aboveU+00352 𝑥͒ 𝐶͒ fermataU+00353 𝑥͓ 𝐶͓ x belowU+00354 𝑥͔ 𝐶͔ left arrowhead belowU+00355 𝑥͕ 𝐶͕ right arrowhead belowU+00356 𝑥͖ 𝐶͖ right arrowhead and up arrowhead belowU+00357 𝑥͗ 𝐶͗ right half ring aboveU+00358 𝑥͘ 𝐶͘ dot above rightU+00359 𝑥͙ 𝐶͙ asterisk belowU+0035A 𝑥͚ 𝐶͚ double ring belowU+0035B 𝑥͛ 𝐶͛ zigzag aboveU+0035C 𝑥͜ 𝐶͜ double breve belowU+0035D 𝑥͝ 𝐶͝ double breveU+0035E 𝑥͞ 𝐶͞ double macronU+0035F 𝑥͟ 𝐶͟ double macron belowU+00360 𝑥͠ 𝐶͠ double tildeU+00361 𝑥͡ 𝐶͡ double inverted breveU+00362 𝑥͢ 𝐶͢ double rightwards arrow belowU+00363 𝑥ͣ 𝐶ͣ latin small letter aU+00364 𝑥ͤ 𝐶ͤ latin small letter eU+00365 𝑥ͥ 𝐶ͥ latin small letter iU+00366 𝑥ͦ 𝐶ͦ latin small letter oU+00367 𝑥ͧ 𝐶ͧ latin small letter uU+00368 𝑥ͨ 𝐶ͨ latin small letter cU+00369 𝑥ͩ 𝐶ͩ latin small letter dU+0036A 𝑥ͪ 𝐶ͪ latin small letter hU+0036B 𝑥ͫ 𝐶ͫ latin small letter mU+0036C 𝑥ͬ 𝐶ͬ latin small letter rU+0036D 𝑥ͭ 𝐶ͭ latin small letter tU+0036E 𝑥ͮ 𝐶ͮ latin small letter vU+0036F 𝑥ͯ 𝐶ͯ latin small letter xU+01AB0 𝑥᪰ 𝐶᪰ doubled circumflex accentU+01AB1 𝑥᪱ 𝐶᪱ diaeresis-ringU+01AB2 𝑥᪲ 𝐶᪲ infinityU+01AB3 𝑥᪳ 𝐶᪳ downwards arrowU+01AB4 𝑥᪴ 𝐶᪴ triple dotU+01AB5 𝑥᪵ 𝐶᪵ x-x belowU+01AB6 𝑥᪶ 𝐶᪶ wiggly line belowU+01AB7 𝑥᪷ 𝐶᪷ open mark belowU+01AB8 𝑥᪸ 𝐶᪸ double open mark belowU+01AB9 𝑥᪹ 𝐶᪹ light centralization stroke belowU+01ABA 𝑥᪺ 𝐶᪺ strong centralization stroke belowU+01ABB 𝑥᪻ 𝐶᪻ parentheses aboveU+01ABC 𝑥᪼ 𝐶᪼ double parentheses aboveU+01ABD 𝑥᪽ 𝐶᪽ parentheses belowU+01ABE 𝑥᪾ 𝐶᪾ parentheses overlayU+01ABF 𝑥ᪿ 𝐶ᪿ latin small letter w belowU+01AC0 𝑥ᫀ 𝐶ᫀ latin small letter turned w belowU+01DC0 𝑥᷀ 𝐶᷀ dotted grave accentU+01DC1 𝑥᷁ 𝐶᷁ dotted acute accentU+01DC2 𝑥᷂ 𝐶᷂ snake belowU+01DC3 𝑥᷃ 𝐶᷃ suspension markU+01DC4 𝑥᷄ 𝐶᷄ macron-acuteU+01DC5 𝑥᷅ 𝐶᷅ grave-macronU+01DC6 𝑥᷆ 𝐶᷆ macron-graveU+01DC7 𝑥᷇ 𝐶᷇ acute-macronU+01DC8 𝑥᷈ 𝐶᷈ grave-acute-graveU+01DC9 𝑥᷉ 𝐶᷉ acute-grave-acuteU+01DCA 𝑥᷊ 𝐶᷊ latin small letter r belowU+01DCB 𝑥᷋ 𝐶᷋ breve-macronU+01DCC 𝑥᷌ 𝐶᷌ macron-breveU+01DCD 𝑥᷍ 𝐶᷍ double circumflex aboveU+01DCE 𝑥᷎ 𝐶᷎ oogonek aboveU+01DCF 𝑥᷏ 𝐶᷏ zigzag belowU+01DD0 𝑥᷐ 𝐶᷐ is belowU+01DD1 𝑥᷑ 𝐶᷑ ur aboveU+01DD2 𝑥᷒ 𝐶᷒ us aboveU+01DD3 𝑥ᷓ 𝐶ᷓ latin small letter flattened open a aboveU+01DD4 𝑥ᷔ 𝐶ᷔ latin small letter aeU+01DD5 𝑥ᷕ 𝐶ᷕ latin small letter aoU+01DD6 𝑥ᷖ 𝐶ᷖ latin small letter avU+01DD7 𝑥ᷗ 𝐶ᷗ latin small letter c cedillaU+01DD8 𝑥ᷘ 𝐶ᷘ latin small letter insular dU+01DD9 𝑥ᷙ 𝐶ᷙ latin small letter ethU+01DDA 𝑥ᷚ 𝐶ᷚ latin small letter gU+01DDB 𝑥ᷛ 𝐶ᷛ latin letter small capital gU+01DDC 𝑥ᷜ 𝐶ᷜ latin small letter kU+01DDD 𝑥ᷝ 𝐶ᷝ latin small letter lU+01DDE 𝑥ᷞ 𝐶ᷞ latin letter small capital lU+01DDF 𝑥ᷟ 𝐶ᷟ latin letter small capital mU+01DE0 𝑥ᷠ 𝐶ᷠ latin small letter nU+01DE1 𝑥ᷡ 𝐶ᷡ latin letter small capital nU+01DE2 𝑥ᷢ 𝐶ᷢ latin letter small capital rU+01DE3 𝑥ᷣ 𝐶ᷣ latin small letter r rotundaU+01DE4 𝑥ᷤ 𝐶ᷤ latin small letter sU+01DE5 𝑥ᷥ 𝐶ᷥ latin small letter long sU+01DE6 𝑥ᷦ 𝐶ᷦ latin small letter zU+01DE7 𝑥ᷧ 𝐶ᷧ latin small letter alphaU+01DE8 𝑥ᷨ 𝐶ᷨ latin small letter bU+01DE9 𝑥ᷩ 𝐶ᷩ latin small letter betaU+01DEA 𝑥ᷪ 𝐶ᷪ latin small letter schwaU+01DEB 𝑥ᷫ 𝐶ᷫ latin small letter fU+01DEC 𝑥ᷬ 𝐶ᷬ latin small letter l with double middle tildeU+01DED 𝑥ᷭ 𝐶ᷭ latin small letter o with light centralization strokeU+01DEE 𝑥ᷮ 𝐶ᷮ latin small letter pU+01DEF 𝑥ᷯ 𝐶ᷯ latin small letter eshU+01DF0 𝑥ᷰ 𝐶ᷰ latin small letter u with light centralization strokeU+01DF1 𝑥ᷱ 𝐶ᷱ latin small letter wU+01DF2 𝑥ᷲ 𝐶ᷲ latin small letter a with diaeresisU+01DF3 𝑥ᷳ 𝐶ᷳ latin small letter o with diaeresisU+01DF4 𝑥ᷴ 𝐶ᷴ latin small letter u with diaeresisU+01DF5 𝑥᷵ 𝐶᷵ up tack aboveU+01DF6 𝑥᷶ 𝐶᷶ kavyka above rightU+01DF7 𝑥᷷ 𝐶᷷ kavyka above leftU+01DF8 𝑥᷸ 𝐶᷸ dot above leftU+01DF9 𝑥᷹ 𝐶᷹ wide inverted bridge belowU+01DFB 𝑥᷻ 𝐶᷻ deletion markU+01DFC 𝑥᷼ 𝐶᷼ double inverted breve belowU+01DFD 𝑥᷽ 𝐶᷽ almost equal to belowU+01DFE 𝑥᷾ 𝐶᷾ left arrowhead aboveU+01DFF 𝑥᷿ 𝐶᷿ right arrowhead and down arrowhead belowU+020D0 𝑥⃐ 𝐶⃐ left harpoon aboveU+020D1 𝑥⃑ 𝐶⃑ right harpoon aboveU+020D2 𝑥⃒ 𝐶⃒ long vertical line overlayU+020D3 𝑥⃓ 𝐶⃓ short vertical line overlayU+020D4 𝑥⃔ 𝐶⃔ anticlockwise arrow aboveU+020D5 𝑥⃕ 𝐶⃕ clockwise arrow aboveU+020D6 𝑥⃖ 𝐶⃖ left arrow aboveU+020D7 𝑥⃗ 𝐶⃗ right arrow aboveU+020D8 𝑥⃘ 𝐶⃘ ring overlayU+020D9 𝑥⃙ 𝐶⃙ clockwise ring overlayU+020DA 𝑥⃚ 𝐶⃚ anticlockwise ring overlayU+00307 𝑥̇ 𝐶̇ dot aboveU+00308 𝑥̈ 𝐶̈ diaeresisU+020DB 𝑥⃛ 𝐶⃛ three dots aboveU+020DC 𝑥⃜ 𝐶⃜ four dots aboveU+020DD 𝑥⃝ 𝐶⃝ enclosing circleU+020DE 𝑥⃞ 𝐶⃞ enclosing squareU+020DF 𝑥⃟ 𝐶⃟ enclosing diamondU+020E0 𝑥⃠ 𝐶⃠ enclosing circle backslashU+020E1 𝑥⃡ 𝐶⃡ left right arrow aboveU+020E2 𝑥⃢ 𝐶⃢ enclosing screenU+020E3 𝑥⃣ 𝐶⃣ enclosing keycapU+020E4 𝑥⃤ 𝐶⃤ enclosing upward pointing triangleU+020E5 𝑥⃥ 𝐶⃥ reverse solidus overlayU+020E6 𝑥⃦ 𝐶⃦ double vertical stroke overlayU+020E7 𝑥⃧ 𝐶⃧ annuity symbolU+020E8 𝑥⃨ 𝐶⃨ triple underdotU+020E9 𝑥⃩ 𝐶⃩ leftwards arrow overlayU+020EA 𝑥⃪ 𝐶⃪ leftwards arrow overlayU+020EB 𝑥⃫ 𝐶⃫ long double solidus overlayU+020EC 𝑥⃬ 𝐶⃬ rightwards harpoon with barb downwardsU+020ED 𝑥⃭ 𝐶⃭ leftwards harpoon with barb downwardsU+020EE 𝑥⃮ 𝐶⃮ left arrow belowU+020EF 𝑥⃯ 𝐶⃯ right arrow belowU+020F0 𝑥⃰ 𝐶⃰ asterisk above上記は非常に長いので、文献「Will Robertson, “Symbols defined by unicode-math,” 2019」にて定義されているもののみ以下に再掲する。
U+00300 𝑥̀ \(\grave{x}\) \grave grave accentU+00300 𝑥̀ \(\UCgrave{x}\) \UCgrave grave accentU+00301 𝑥́ \(\acute{x}\) \acute acute accentU+00301 𝑥́ \(\UCacute{x}\) \UCacute acute accentU+00302 𝑥̂ \(\hat{x}\) \hat circumflex accentU+00302 𝑥̂ \(\UChat{x}\) \UChat circumflex accentU+00303 𝑥̃ \(\tilde{x}\) \tilde tildeU+00303 𝑥̃ \(\UCtilde{x}\) \UCtilde tildeU+00304 𝑥̄ \(\bar{x}\) \bar macronU+00304 𝑥̄ \(\UCbar{x}\) \UCbar macronU+00305 𝑥̅ \(\overbar{x}\) \overbar overbar embellishmentU+00306 𝑥̆ \(\breve{x}\) \breve breveU+00306 𝑥̆ \(\UCbreve{x}\) \UCbreve breveU+00307 𝑥̇ \(\dot{x}\) \dot dot aboveU+00307 𝑥̇ \(\UCdot{x}\) \UCdot dot aboveU+00308 𝑥̈ \(\ddot{x}\) \ddot dieresisU+00308 𝑥̈ \(\UCddot{x}\) \UCddot dieresisU+00309 𝑥̉ \(\ovhook{x}\) \ovhook hook aboveU+0030A 𝑥̊ \(\ocirc{x}\) \ocirc ringU+0030C 𝑥̌ \(\check{x}\) \check caronU+0030C 𝑥̌ \(\UCcheck{x}\) \UCcheck caronU+00310 𝑥̐ \(\candra{x}\) \candra candrabindu (non-spacing)U+00312 𝑥̒ \(\oturnedcomma{x}\) \oturnedcomma turned comma aboveU+00315 𝑥̕ \(\ocommatopright{x}\) \ocommatopright comma above rightU+0031A 𝑥̚ \(\droang{x}\) \droang left angle above (non-spacing)U+020D0 𝑥⃐ \(\leftharpoonaccent{x}\) \leftharpoonaccent left harpoon aboveU+020D1 𝑥⃑ \(\rightharpoonaccent{x}\) \rightharpoonaccent right harpoon aboveU+020D2 𝑥⃒ \(\vertoverlay{x}\) \vertoverlay long vertical line overlayU+020D7 𝑥⃗ \(\vec{x}\) \vec right arrow aboveU+020D7 𝑥⃗ \(\UCvec{x}\) \UCvec right arrow aboveU+020DB 𝑥⃛ \(\dddot{x}\) \dddot three dots aboveU+020DB 𝑥⃛ \(\UCdddot{x}\) \UCdddot three dots aboveU+020DC 𝑥⃜ \(\ddddot{x}\) \ddddot four dots aboveU+020DC 𝑥⃜ \(\UCddddot{x}\) \UCddddot four dots aboveU+020E7 𝑥⃧ \(\annuity{x}\) \annuity annuity symbolU+020E9 𝑥⃩ \(\widebridgeabove{x}\) \widebridgeabove wide bridge aboveU+020F0 𝑥⃰ \(\asteraccent{x}\) \asteraccent asterisk aboveU+020E8 𝑥⃨ \(\threeunderdot{x}\) \threeunderdot triple underdot以下に、コマンド名が定義されているほぼすべてのグリフを Unicode を利用して印字してみる。ちなみに、現時点では KaTeX において印字内容が大幅に削られている。それは、Unicode の UTF-16 のサロゲートペアを用いたグリフの処理に問題があるようで、以下のようなエラーで処理が中断されてしまうからである。
Uncaught Error: Font metrics not found for font: . LaTeX-incompatible input and strict mode is set to 'warn': Unrecognized Unicode character "U+D835" (55349) [unknownSymbol]
U+00021 ! \(\mathexclam\) \mathexclam exclamation markU+00028 ( \(\lparen\) \lparen left parenthesisU+00029 ) \(\rparen\) \rparen right parenthesisU+0005B [ \(\lbrack\) \lbrack left square bracketU+0005D ] \(\rbrack\) \rbrack right square bracketU+0007B { \(\lbrace\) \lbrace left curly bracketU+0007D } \(\rbrace\) \rbrace right curly bracketU+0221A √ \(\sqrt{}\) \sqrt{} radicalU+0221B ∛ \(\cuberoot\) \cuberoot cube rootU+0221C ∜ \(\fourthroot\) \fourthroot fourth rootU+02308 ⌈ \(\lceil\) \lceil left ceilingU+02309 ⌉ \(\rceil\) \rceil right ceilingU+0230A ⌊ \(\lfloor\) \lfloor left floorU+0230B ⌋ \(\rfloor\) \rfloor right floorU+0231C ⌜ \(\ulcorner\) \ulcorner upper left cornerU+0231D ⌝ \(\urcorner\) \urcorner upper right cornerU+0231E ⌞ \(\llcorner\) \llcorner lower left cornerU+0231F ⌟ \(\lrcorner\) \lrcorner lower right cornerU+023B0 ⎰ \(\lmoustache\) \lmoustache upper left or lower right curly bracket sectionU+023B1 ⎱ \(\rmoustache\) \rmoustache upper right or lower left curly bracket sectionU+02772 ❲ \(\lbrbrak\) \lbrbrak light left tortoise shell bracket ornamentU+02773 ❳ \(\rbrbrak\) \rbrbrak light right tortoise shell bracket ornamentU+027C5 ⟅ \(\lbag\) \lbag left s-shaped bag delimiterU+027C6 ⟆ \(\rbag\) \rbag right s-shaped bag delimiterU+027CC ⟌ \(\longdivision\) \longdivision long divisionU+027E6 ⟦ \(\lBrack\) \lBrack mathematical left white square bracketU+027E7 ⟧ \(\rBrack\) \rBrack mathematical right white square bracketU+027E8 ⟨ \(\langle\) \langle mathematical left angle bracketU+027E9 ⟩ \(\rangle\) \rangle mathematical right angle bracketU+027EA ⟪ \(\lAngle\) \lAngle mathematical left double angle bracketU+027EB ⟫ \(\rAngle\) \rAngle mathematical right double angle bracketU+027EC ⟬ \(\Lbrbrak\) \Lbrbrak mathematical left white tortoise shell bracketU+027ED ⟭ \(\Rbrbrak\) \Rbrbrak mathematical right white tortoise shell bracketU+027EE ⟮ \(\lgroup\) \lgroup mathematical left flattened parenthesisU+027EF ⟯ \(\rgroup\) \rgroup mathematical right flattened parenthesisU+02983 ⦃ \(\lBrace\) \lBrace left white curly bracketU+02984 ⦄ \(\rBrace\) \rBrace right white curly bracketU+02985 ⦅ \(\lParen\) \lParen left white parenthesisU+02986 ⦆ \(\rParen\) \rParen right white parenthesisU+02987 ⦇ \(\llparenthesis\) \llparenthesis z notation left image bracketU+02988 ⦈ \(\rrparenthesis\) \rrparenthesis z notation right image bracketU+02989 ⦉ \(\llangle\) \llangle z notation left binding bracketU+0298A ⦊ \(\rrangle\) \rrangle z notation right binding bracketU+0298B ⦋ \(\lbrackubar\) \lbrackubar left square bracket with underbarU+0298C ⦌ \(\rbrackubar\) \rbrackubar right square bracket with underbarU+0298D ⦍ \(\lbrackultick\) \lbrackultick left square bracket with tick in top cornerU+0298E ⦎ \(\rbracklrtick\) \rbracklrtick right square bracket with tick in bottom cornerU+0298F ⦏ \(\lbracklltick\) \lbracklltick left square bracket with tick in bottom cornerU+02990 ⦐ \(\rbrackurtick\) \rbrackurtick right square bracket with tick in top cornerU+02991 ⦑ \(\langledot\) \langledot left angle bracket with dotU+02992 ⦒ \(\rangledot\) \rangledot right angle bracket with dotU+02993 ⦓ \(\lparenless\) \lparenless left arc less-than bracketU+02994 ⦔ \(\rparengtr\) \rparengtr right arc greater-than bracketU+02995 ⦕ \(\Lparengtr\) \Lparengtr double left arc greater-than bracketU+02996 ⦖ \(\Rparenless\) \Rparenless double right arc less-than bracketU+02997 ⦗ \(\lblkbrbrak\) \lblkbrbrak left black tortoise shell bracketU+02998 ⦘ \(\rblkbrbrak\) \rblkbrbrak right black tortoise shell bracketU+029D8 ⧘ \(\lvzigzag\) \lvzigzag left wiggly fenceU+029D9 ⧙ \(\rvzigzag\) \rvzigzag right wiggly fenceU+029DA ⧚ \(\Lvzigzag\) \Lvzigzag left double wiggly fenceU+029DB ⧛ \(\Rvzigzag\) \Rvzigzag right double wiggly fenceU+029FC ⧼ \(\lcurvyangle\) \lcurvyangle left pointing curved angle bracketU+029FD ⧽ \(\rcurvyangle\) \rcurvyangle right pointing curved angle bracketU+0007C | \(\vert\) \vert vertical barU+02016 ‖ \(\Vert\) \Vert double vertical barU+02980 ⦀ \(\Vvert\) \Vvert triple vertical bar delimiterU+0002C , \(\mathcomma\) \mathcomma commaU+0003A : \(\mathcolon\) \mathcolon colonU+0003B ; \(\mathsemicolon\) \mathsemicolon semicolonU+0002B + \(x\mathplus y\) \mathplus plus sign b:U+000B1 ± \(x\pm y\) \pm plus-or-minus signU+000B7 · \(x\cdotp y\) \cdotp /centerdot b: middle dotU+000D7 × \(x\times y\) \times multiply signU+000F7 ÷ \(x\div y\) \div divide signU+02020 † \(x\dagger y\) \dagger dagger relationU+02021 ‡ \(x\ddagger y\) \ddagger double dagger relationU+02022 • \(x\smblkcircle y\) \smblkcircle /bullet b: round bullet, filledU+02040 ⁀ \(x\tieconcat y\) \tieconcat character tie, z notation sequence concatenationU+02044 ⁄ \(x\fracslash y\) \fracslash fraction slashU+0214B ⅋ \(x\upand y\) \upand turned ampersandU+02212 − \(x\minus y\) \minus minus signU+02213 ∓ \(x\mp y\) \mp minus-or-plus signU+02214 ∔ \(x\dotplus y\) \dotplus plus sign, dot aboveU+02215 ∕ \(x\divslash y\) \divslash division slashU+02216 ∖ \(x\smallsetminus y\) \smallsetminus small set minus (cf. reverse solidus)U+02217 ∗ \(x\ast y\) \ast centered asteriskU+02218 ∘ \(x\vysmwhtcircle y\) \vysmwhtcircle composite function (small circle)U+02219 ∙ \(x\vysmblkcircle y\) \vysmblkcircle bullet operatorU+02227 ∧ \(x\wedge y\) \wedge /wedge /land b: logical andU+02228 ∨ \(x\vee y\) \vee /vee /lor b: logical orU+02229 ∩ \(x\cap y\) \cap intersectionU+0222A ∪ \(x\cup y\) \cup union or logical sumU+02238 ∸ \(x\dotminus y\) \dotminus minus sign, dot aboveU+0223E ∾ \(x\invlazys y\) \invlazys most positive [inverted lazy s]U+02240 ≀ \(x\wr y\) \wr wreath productU+0228C ⊌ \(x\cupleftarrow y\) \cupleftarrow multisetU+0228D ⊍ \(x\cupdot y\) \cupdot union, with dotU+0228E ⊎ \(x\uplus y\) \uplus plus sign in unionU+02293 ⊓ \(x\sqcap y\) \sqcap square intersectionU+02294 ⊔ \(x\sqcup y\) \sqcup square unionU+02295 ⊕ \(x\oplus y\) \oplus plus sign in circleU+02296 ⊖ \(x\ominus y\) \ominus minus sign in circleU+02297 ⊗ \(x\otimes y\) \otimes multiply sign in circleU+02298 ⊘ \(x\oslash y\) \oslash solidus in circleU+02299 ⊙ \(x\odot y\) \odot middle dot in circleU+0229A ⊚ \(x\circledcirc y\) \circledcirc small circle in circleU+0229B ⊛ \(x\circledast y\) \circledast asterisk in circleU+0229C ⊜ \(x\circledequal y\) \circledequal equal in circleU+0229D ⊝ \(x\circleddash y\) \circleddash hyphen in circleU+0229E ⊞ \(x\boxplus y\) \boxplus plus sign in boxU+0229F ⊟ \(x\boxminus y\) \boxminus minus sign in boxU+022A0 ⊠ \(x\boxtimes y\) \boxtimes multiply sign in boxU+022A1 ⊡ \(x\boxdot y\) \boxdot /dotsquare /boxdot b: small dot in boxU+022BA ⊺ \(x\intercal y\) \intercal intercalU+022BB ⊻ \(x\veebar y\) \veebar logical or, bar below (large vee); exclusive disjunctionU+022BC ⊼ \(x\barwedge y\) \barwedge bar, wedge (large wedge)U+022BD ⊽ \(x\barvee y\) \barvee bar, vee (large vee)U+022C4 ⋄ \(x\smwhtdiamond y\) \smwhtdiamond white diamondU+022C5 ⋅ \(x\cdot y\) \cdot small middle dotU+022C6 ⋆ \(x\star y\) \star small star, filled, lowU+022C7 ⋇ \(x\divideontimes y\) \divideontimes division on timesU+022C9 ⋉ \(x\ltimes y\) \ltimes times sign, left closedU+022CA ⋊ \(x\rtimes y\) \rtimes times sign, right closedU+022CB ⋋ \(x\leftthreetimes y\) \leftthreetimes left semidirect productU+022CC ⋌ \(x\rightthreetimes y\) \rightthreetimes right semidirect productU+022CE ⋎ \(x\curlyvee y\) \curlyvee curly logical orU+022CF ⋏ \(x\curlywedge y\) \curlywedge curly logical andU+022D2 ⋒ \(x\Cap y\) \Cap /cap /doublecap b: double intersectionU+022D3 ⋓ \(x\Cup y\) \Cup /cup /doublecup b: double unionU+02305 ⌅ \(x\varbarwedge y\) \varbarwedge /barwedge b: logical and, bar aboveU+02306 ⌆ \(x\vardoublebarwedge y\) \vardoublebarwedge /doublebarwedge b: logical and, double bar above [perspective (double bar over small wedge)]U+0233D ⌽ \(x\obar y\) \obar circle with vertical barU+025B3 △ \(x\bigtriangleup y\) \bigtriangleup big up triangle, openU+025B7 ▷ \(x\triangleright y\) \triangleright (large) right triangle, open; z notation range restrictionU+025C1 ◁ \(x\triangleleft y\) \triangleleft (large) left triangle, open; z notation domain restrictionU+025CB ○ \(x\mdlgwhtcircle y\) \mdlgwhtcircle medium large circleU+025EB ◫ \(x\boxbar y\) \boxbar vertical bar in boxU+027C7 ⟇ \(x\veedot y\) \veedot or with dot insideU+027D1 ⟑ \(x\wedgedot y\) \wedgedot and with dotU+027E0 ⟠ \(x\lozengeminus y\) \lozengeminus lozenge divided by horizontal ruleU+027E1 ⟡ \(x\concavediamond y\) \concavediamond white concave-sided diamondU+027E2 ⟢ \(x\concavediamondtickleft y\) \concavediamondtickleft white concave-sided diamond with leftwards tickU+027E3 ⟣ \(x\concavediamondtickright y\) \concavediamondtickright white concave-sided diamond with rightwards tickU+027E4 ⟤ \(x\whitesquaretickleft y\) \whitesquaretickleft white square with leftwards tickU+027E5 ⟥ \(x\whitesquaretickright y\) \whitesquaretickright white square with rightwards tickU+029B5 ⦵ \(x\circlehbar y\) \circlehbar circle with horizontal barU+029B6 ⦶ \(x\circledvert y\) \circledvert circled vertical barU+029B7 ⦷ \(x\circledparallel y\) \circledparallel circled parallelU+029B8 ⦸ \(x\obslash y\) \obslash circled reverse solidusU+029B9 ⦹ \(x\operp y\) \operp circled perpendicularU+029C0 ⧀ \(x\olessthan y\) \olessthan circled less-thanU+029C1 ⧁ \(x\ogreaterthan y\) \ogreaterthan circled greater-thanU+029C4 ⧄ \(x\boxdiag y\) \boxdiag squared rising diagonal slashU+029C5 ⧅ \(x\boxbslash y\) \boxbslash squared falling diagonal slashU+029C6 ⧆ \(x\boxast y\) \boxast squared asteriskU+029C7 ⧇ \(x\boxcircle y\) \boxcircle squared small circleU+029C8 ⧈ \(x\boxbox y\) \boxbox squared squareU+029CD ⧍ \(x\triangleserifs y\) \triangleserifs triangle with serifs at bottomU+029D6 ⧖ \(x\hourglass y\) \hourglass white hourglassU+029D7 ⧗ \(x\blackhourglass y\) \blackhourglass black hourglassU+029E2 ⧢ \(x\shuffle y\) \shuffle shuffle productU+029EB ⧫ \(x\mdlgblklozenge y\) \mdlgblklozenge black lozengeU+029F5 ⧵ \(x\setminus y\) \setminus reverse solidus operatorU+029F6 ⧶ \(x\dsol y\) \dsol solidus with overbarU+029F7 ⧷ \(x\rsolbar y\) \rsolbar reverse solidus with horizontal strokeU+029FA ⧺ \(x\doubleplus y\) \doubleplus double plusU+029FB ⧻ \(x\tripleplus y\) \tripleplus triple plusU+029FE ⧾ \(x\tplus y\) \tplus tinyU+029FF ⧿ \(x\tminus y\) \tminus minyU+02A22 ⨢ \(x\ringplus y\) \ringplus plus sign with small circle aboveU+02A23 ⨣ \(x\plushat y\) \plushat plus sign with circumflex accent aboveU+02A24 ⨤ \(x\simplus y\) \simplus plus sign with tilde aboveU+02A25 ⨥ \(x\plusdot y\) \plusdot plus sign with dot belowU+02A26 ⨦ \(x\plussim y\) \plussim plus sign with tilde belowU+02A27 ⨧ \(x\plussubtwo y\) \plussubtwo plus sign with subscript twoU+02A28 ⨨ \(x\plustrif y\) \plustrif plus sign with black triangleU+02A29 ⨩ \(x\commaminus y\) \commaminus minus sign with comma aboveU+02A2A ⨪ \(x\minusdot y\) \minusdot minus sign with dot belowU+02A2B ⨫ \(x\minusfdots y\) \minusfdots minus sign with falling dotsU+02A2C ⨬ \(x\minusrdots y\) \minusrdots minus sign with rising dotsU+02A2D ⨭ \(x\opluslhrim y\) \opluslhrim plus sign in left half circleU+02A2E ⨮ \(x\oplusrhrim y\) \oplusrhrim plus sign in right half circleU+02A2F ⨯ \(x\vectimes y\) \vectimes vector or cross productU+02A30 ⨰ \(x\dottimes y\) \dottimes multiplication sign with dot aboveU+02A31 ⨱ \(x\timesbar y\) \timesbar multiplication sign with underbarU+02A32 ⨲ \(x\btimes y\) \btimes semidirect product with bottom closedU+02A33 ⨳ \(x\smashtimes y\) \smashtimes smash productU+02A34 ⨴ \(x\otimeslhrim y\) \otimeslhrim multiplication sign in left half circleU+02A35 ⨵ \(x\otimesrhrim y\) \otimesrhrim multiplication sign in right half circleU+02A36 ⨶ \(x\otimeshat y\) \otimeshat circled multiplication sign with circumflex accentU+02A37 ⨷ \(x\Otimes y\) \Otimes multiplication sign in double circleU+02A38 ⨸ \(x\odiv y\) \odiv circled division signU+02A39 ⨹ \(x\triangleplus y\) \triangleplus plus sign in triangleU+02A3A ⨺ \(x\triangleminus y\) \triangleminus minus sign in triangleU+02A3B ⨻ \(x\triangletimes y\) \triangletimes multiplication sign in triangleU+02A3C ⨼ \(x\intprod y\) \intprod interior productU+02A3D ⨽ \(x\intprodr y\) \intprodr righthand interior productU+02A3E ⨾ \(x\fcmp y\) \fcmp z notation relational compositionU+02A3F ⨿ \(x\amalg y\) \amalg amalgamation or coproductU+02A40 ⩀ \(x\capdot y\) \capdot intersection with dotU+02A41 ⩁ \(x\uminus y\) \uminus union with minus signU+02A42 ⩂ \(x\barcup y\) \barcup union with overbarU+02A43 ⩃ \(x\barcap y\) \barcap intersection with overbarU+02A44 ⩄ \(x\capwedge y\) \capwedge intersection with logical andU+02A45 ⩅ \(x\cupvee y\) \cupvee union with logical orU+02A46 ⩆ \(x\cupovercap y\) \cupovercap union above intersectionU+02A47 ⩇ \(x\capovercup y\) \capovercup intersection above unionU+02A48 ⩈ \(x\cupbarcap y\) \cupbarcap union above bar above intersectionU+02A49 ⩉ \(x\capbarcup y\) \capbarcup intersection above bar above unionU+02A4A ⩊ \(x\twocups y\) \twocups union beside and joined with unionU+02A4B ⩋ \(x\twocaps y\) \twocaps intersection beside and joined with intersectionU+02A4C ⩌ \(x\closedvarcup y\) \closedvarcup closed union with serifsU+02A4D ⩍ \(x\closedvarcap y\) \closedvarcap closed intersection with serifsU+02A4E ⩎ \(x\Sqcap y\) \Sqcap double square intersectionU+02A4F ⩏ \(x\Sqcup y\) \Sqcup double square unionU+02A50 ⩐ \(x\closedvarcupsmashprod y\) \closedvarcupsmashprod closed union with serifs and smash productU+02A51 ⩑ \(x\wedgeodot y\) \wedgeodot logical and with dot aboveU+02A52 ⩒ \(x\veeodot y\) \veeodot logical or with dot aboveU+02A53 ⩓ \(x\Wedge y\) \Wedge double logical andU+02A54 ⩔ \(x\Vee y\) \Vee double logical orU+02A55 ⩕ \(x\wedgeonwedge y\) \wedgeonwedge two intersecting logical andU+02A56 ⩖ \(x\veeonvee y\) \veeonvee two intersecting logical orU+02A57 ⩗ \(x\bigslopedvee y\) \bigslopedvee sloping large orU+02A58 ⩘ \(x\bigslopedwedge y\) \bigslopedwedge sloping large andU+02A5A ⩚ \(x\wedgemidvert y\) \wedgemidvert logical and with middle stemU+02A5B ⩛ \(x\veemidvert y\) \veemidvert logical or with middle stemU+02A5C ⩜ \(x\midbarwedge y\) \midbarwedge ogical and with horizontal dashU+02A5D ⩝ \(x\midbarvee y\) \midbarvee logical or with horizontal dashU+02A5E ⩞ \(x\doublebarwedge y\) \doublebarwedge logical and with double overbarU+02A5F ⩟ \(x\wedgebar y\) \wedgebar logical and with underbarU+02A60 ⩠ \(x\wedgedoublebar y\) \wedgedoublebar logical and with double underbarU+02A61 ⩡ \(x\varveebar y\) \varveebar small vee with underbarU+02A62 ⩢ \(x\doublebarvee y\) \doublebarvee logical or with double overbarU+02A63 ⩣ \(x\veedoublebar y\) \veedoublebar logical or with double underbarU+02A64 ⩤ \(x\dsub y\) \dsub z notation domain antirestrictionU+02A65 ⩥ \(x\rsub y\) \rsub z notation range antirestrictionU+02A71 ⩱ \(x\eqqplus y\) \eqqplus equals sign above plus signU+02A72 ⩲ \(x\pluseqq y\) \pluseqq plus sign above equals signU+02AF4 ⫴ \(x\interleave y\) \interleave triple vertical bar binary relationU+02AF5 ⫵ \(x\nhVvert y\) \nhVvert triple vertical bar with horizontal strokeU+02AF6 ⫶ \(x\threedotcolon y\) \threedotcolon triple colon operatorU+02AFB ⫻ \(x\trslash y\) \trslash triple solidus binary relationU+02AFD ⫽ \(x\sslash y\) \sslash double solidus operatorU+02AFE ⫾ \(x\talloblong y\) \talloblong white vertical barU+0213F ℿ \(\displaystyle\Bbbprod_{n=0}^\infty\) \Bbbprod double-struck capital piU+02140 ⅀ \(\displaystyle\Bbbsum_{n=0}^\infty\) \Bbbsum double-struck n-ary summationU+0220F ∏ \(\displaystyle\prod_{n=0}^\infty\) \prod product operatorU+02210 ∐ \(\displaystyle\coprod_{n=0}^\infty\) \coprod coproduct operatorU+02211 ∑ \(\displaystyle\sum_{n=0}^\infty\) \sum summation operatorU+0222B ∫ \(\displaystyle\int_0^\infty\) \int integral operatorU+0222C ∬ \(\displaystyle\iint_0^\infty\) \iint double integral operatorU+0222D ∭ \(\displaystyle\iiint_0^\infty\) \iiint triple integral operatorU+0222E ∮ \(\displaystyle\oint_0^\infty\) \oint contour integral operatorU+0222F ∮ \(\displaystyle\oiint_0^\infty\) \oiint double contour integral operatorU+02230 ∮ \(\displaystyle\oiiint_0^\infty\) \oiiint triple contour integral operatorU+02231 ∱ \(\displaystyle\intclockwise_0^\infty\) \intclockwise clockwise integralU+02232 ∲ \(\displaystyle\varointclockwise_0^\infty\) \varointclockwise contour integral, clockwiseU+02233 ∳ \(\displaystyle\ointctrclockwise_0^\infty\) \ointctrclockwise contour integral, anticlockwiseU+022C0 ⋀ \(\displaystyle\bigwedge_{n=0}^\infty\) \bigwedge logical and operatorU+022C1 ⋁ \(\displaystyle\bigvee_{n=0}^\infty\) \bigvee logical or operatorU+022C2 ⋂ \(\displaystyle\bigcap_{n=0}^\infty\) \bigcap intersection operatorU+022C3 ⋃ \(\displaystyle\bigcup_{n=0}^\infty\) \bigcup union operatorU+027D5 ⟕ \(\displaystyle\leftouterjoin_{n=0}^\infty\) \leftouterjoin left outer joinU+027D6 ⟖ \(\displaystyle\rightouterjoin_{n=0}^\infty\) \rightouterjoin right outer joinU+027D7 ⟗ \(\displaystyle\fullouterjoin_{n=0}^\infty\) \fullouterjoin full outer joinU+027D8 ⟘ \(\displaystyle\bigbot_{n=0}^\infty\) \bigbot large up tackU+027D9 ⟙ \(\displaystyle\bigtop_{n=0}^\infty\) \bigtop large down tackU+029F8 ⧸ \(\displaystyle\xsol_{n=0}^\infty\) \xsol big solidusU+029F9 ⧹ \(\displaystyle\xbsol_{n=0}^\infty\) \xbsol big reverse solidusU+02A00 ⨀ \(\displaystyle\bigodot_{n=0}^\infty\) \bigodot n-ary circled dot operatorU+02A01 ⨁ \(\displaystyle\bigoplus_{n=0}^\infty\) \bigoplus n-ary circled plus operatorU+02A02 ⨂ \(\displaystyle\bigotimes_{n=0}^\infty\) \bigotimes n-ary circled times operatorU+02A03 ⨃ \(\displaystyle\bigcupdot_{n=0}^\infty\) \bigcupdot n-ary union operator with dotU+02A04 ⨄ \(\displaystyle\biguplus_{n=0}^\infty\) \biguplus n-ary union operator with plusU+02A05 ⨅ \(\displaystyle\bigsqcap_{n=0}^\infty\) \bigsqcap n-ary square intersection operatorU+02A06 ⨆ \(\displaystyle\bigsqcup_{n=0}^\infty\) \bigsqcup n-ary square union operatorU+02A07 ⨇ \(\displaystyle\conjquant_{n=0}^\infty\) \conjquant two logical and operatorU+02A08 ⨈ \(\displaystyle\disjquant_{n=0}^\infty\) \disjquant two logical or operatorU+02A09 ⨉ \(\displaystyle\bigtimes_{n=0}^\infty\) \bigtimes n-ary times operatorU+02A0A ⨊ \(\displaystyle\modtwosum_{n=0}^\infty\) \modtwosum modulo two sumU+02A0B ⨋ \(\displaystyle\sumint_0^\infty\) \sumint summation with integralU+02A0C ⨌ \(\displaystyle\iiiint_0^\infty\) \iiiint quadruple integral operatorU+02A0D ⨍ \(\displaystyle\intbar_0^\infty\) \intbar finite part integralU+02A0E ⨎ \(\displaystyle\intBar_0^\infty\) \intBar integral with double strokeU+02A0F ⨏ \(\displaystyle\fint_0^\infty\) \fint integral average with slashU+02A10 ⨐ \(\displaystyle\cirfnint_0^\infty\) \cirfnint circulation functionU+02A11 ⨑ \(\displaystyle\awint_0^\infty\) \awint anticlockwise integrationU+02A12 ⨒ \(\displaystyle\rppolint_0^\infty\) \rppolint line integration with rectangular path around poleU+02A13 ⨓ \(\displaystyle\scpolint_0^\infty\) \scpolint line integration with semicircular path around poleU+02A14 ⨔ \(\displaystyle\npolint_0^\infty\) \npolint line integration not including the poleU+02A15 ⨕ \(\displaystyle\pointint_0^\infty\) \pointint integral around a point operatorU+02A16 ⨖ \(\displaystyle\sqint_0^\infty\) \sqint quaternion integral operatorU+02A17 ⨗ \(\displaystyle\intlarhk_0^\infty\) \intlarhk integral with leftwards arrow with hookU+02A18 ⨘ \(\displaystyle\intx_0^\infty\) \intx integral with times signU+02A19 ⨙ \(\displaystyle\intcap_0^\infty\) \intcap integral with intersectionU+02A1A ⨚ \(\displaystyle\intcup_0^\infty\) \intcup integral with unionU+02A1B ⨛ \(\displaystyle\upint_0^\infty\) \upint integral with overbarU+02A1C ⨜ \(\displaystyle\lowint_0^\infty\) \lowint integral with underbarU+02A1D ⨝ \(\displaystyle\UCJoin_{n=0}^\infty\) \UCJoin joinU+02A1E ⨞ \(\displaystyle\bigtriangleleft_{n=0}^\infty\) \bigtriangleleft large left triangle operatorU+02A1F ⨟ \(\displaystyle\zcmp_{n=0}^\infty\) \zcmp z notation schema compositionU+02A20 ⨠ \(\displaystyle\zpipe_{n=0}^\infty\) \zpipe z notation schema pipingU+02A21 ⨡ \(\displaystyle\zproject_{n=0}^\infty\) \zproject z notation schema projectionU+02AFC ⫼ \(\displaystyle\biginterleave_{n=0}^\infty\) \biginterleave large triple vertical bar operatorU+02AFF ⫿ \(\displaystyle\bigtalloblong_{n=0}^\infty\) \bigtalloblong n-ary white vertical barU+00023 # \(\mathoctothorpe\) \mathoctothorpe number signU+00024 $ \(\mathdollar\) \mathdollar dollar signU+00025 % \(\mathpercent\) \mathpercent percent signU+00026 & \(\mathampersand\) \mathampersand ampersandU+0002E . \(\mathperiod\) \mathperiod full stop, periodU+0002F / \(\mathslash\) \mathslash solidusU+0003F ? \(\mathquestion\) \mathquestion question markU+00040 @ \(\mathatsign\) \mathatsign commercial atU+0005C \ \(\backslash\) \backslash reverse solidusU+000A3 £ \(\mathsterling\) \mathsterling pound signU+000A5 ¥ \(\mathyen\) \mathyen yen signU+000A7 § \(\mathsection\) \mathsection section symbolU+000AC ¬ \(\neg\) \neg /neg /lnot not signU+000B6 ¶ \(\mathparagraph\) \mathparagraph paragraph symbolU+001B5 Ƶ \(\Zbar\) \Zbar impedance (latin capital letter z with stroke)U+003F6 ϶ \(\upbackepsilon\) \upbackepsilon greek reversed lunate epsilon symbolU+02015 ― \(\horizbar\) \horizbar horizontal barU+02017 ‗ \(\twolowline\) \twolowline double low line (spacing)U+02025 ‥ \(\enleadertwodots\) \enleadertwodots double baseline dot (en leader)U+02026 … \(\unicodeellipsis\) \unicodeellipsis ellipsis (horizontal)U+02032 ′ \(\prime\) \prime prime or minute, not superscriptedU+02033 ″ \(\dprime\) \dprime double prime or second, not superscriptedU+02034 ‴ \(\trprime\) \trprime triple prime (not superscripted)U+02035 ‵ \(\backprime\) \backprime reverse prime, not superscriptedU+02036 ‶ \(\backdprime\) \backdprime double reverse prime, not superscriptedU+02037 ‷ \(\backtrprime\) \backtrprime triple reverse prime, not superscriptedU+02038 ‸ \(\caretinsert\) \caretinsert caret (insertion mark)U+0203C ‼ \(\Exclam\) \Exclam double exclamation markU+02043 ⁃ \(\hyphenbullet\) \hyphenbullet rectangle, filled (hyphen bullet)U+02047 ⁇ \(\Question\) \Question double question markU+02057 ⁗ \(\qprime\) \qprime quadruple prime, not superscriptedU+020AC € \(\euro\) \euro euro signU+020DD ⃝ \(\enclosecircle\) \enclosecircle enclosing circleU+020DE ⃞ \(\enclosesquare\) \enclosesquare enclosing squareU+020DF ⃟ \(\enclosediamond\) \enclosediamond enclosing diamondU+020E4 ⃤ \(\enclosetriangle\) \enclosetriangle enclosing upward pointing triangleU+02107 Ɛ \(\Eulerconst\) \Eulerconst euler constantU+0210E ℎ \(\Planckconst\) \Planckconst planck constantU+02127 ℧ \(\mho\) \mho conductanceU+02132 Ⅎ \(\Finv\) \Finv turned capital fU+0213C ℼ \(\Bbbpi\) \Bbbpi double-struck small piU+02141 ⅁ \(\Game\) \Game turned sans-serif capital gU+02142 ⅂ \(\sansLturned\) \sansLturned turned sans-serif capital lU+02143 ⅃ \(\sansLmirrored\) \sansLmirrored reversed sans-serif capital lU+02144 ⅄ \(\Yup\) \Yup turned sans-serif capital yU+02145 ⅅ \(\mitBbbD\) \mitBbbD double-struck italic capital dU+02146 ⅆ \(\mitBbbd\) \mitBbbd double-struck italic small dU+02147 ⅇ \(\mitBbbe\) \mitBbbe double-struck italic small eU+02148 ⅈ \(\mitBbbi\) \mitBbbi double-struck italic small iU+02149 ⅉ \(\mitBbbj\) \mitBbbj double-struck italic small jU+0214A ⅊ \(\PropertyLine\) \PropertyLine property lineU+021A8 ↨ \(\updownarrowbar\) \updownarrowbar up down arrow with base (perpendicular)U+021B4 ↴ \(\linefeed\) \linefeed rightwards arrow with corner downwardsU+021B5 ↵ \(\carriagereturn\) \carriagereturn downwards arrow with cornerleftward = carriage returnU+021B8 ↸ \(\barovernorthwestarrow\) \barovernorthwestarrow north west arrow to long barU+021B9 ↹ \(\barleftarrowrightarrowbar\) \barleftarrowrightarrowbar leftwards arrow to bar over rightwards arrow to barU+021BA ↺ \(\acwopencirclearrow\) \acwopencirclearrow anticlockwise open circle arrowU+021BB ↻ \(\cwopencirclearrow\) \cwopencirclearrow clockwise open circle arrowU+021DE ⇞ \(\nHuparrow\) \nHuparrow upwards arrow with double strokeU+021DF ⇟ \(\nHdownarrow\) \nHdownarrow downwards arrow with doublestrokeU+021E0 ⇠ \(\leftdasharrow\) \leftdasharrow leftwards dashed arrowU+021E1 ⇡ \(\updasharrow\) \updasharrow upwards dashed arrowU+021E2 ⇢ \(\rightdasharrow\) \rightdasharrow rightwards dashed arrowU+021E3 ⇣ \(\downdasharrow\) \downdasharrow downwards dashed arrowU+021E6 ⇦ \(\leftwhitearrow\) \leftwhitearrow leftwards white arrowU+021E7 ⇧ \(\upwhitearrow\) \upwhitearrow upwards white arrowU+021E8 ⇨ \(\rightwhitearrow\) \rightwhitearrow rightwards white arrowU+021E9 ⇩ \(\downwhitearrow\) \downwhitearrow downwards white arrowU+021EA ⇪ \(\whitearrowupfrombar\) \whitearrowupfrombar upwards white arrow from barU+02200 ∀ \(\forall\) \forall for allU+02201 ∁ \(\complement\) \complement complement signU+02203 ∃ \(\exists\) \exists at least one existsU+02204 ∄ \(\nexists\) \nexists negated existsU+02205 ∅ \(\varnothing\) \varnothing circle, slashU+02206 ∆ \(\increment\) \increment laplacian (delta; nabla^2)U+0220E ∎ \(\QED\) \QED end of proofU+0221A √ \(\surd\) \surd radicalU+0221E ∞ \(\infty\) \infty infinityU+0221F ∟ \(\rightangle\) \rightangle right (90 degree) angleU+02220 ∠ \(\angle\) \angle angleU+02221 ∡ \(\measuredangle\) \measuredangle angle-measuredU+02222 ∢ \(\sphericalangle\) \sphericalangle angle-sphericalU+02234 ∴ \(\therefore\) \therefore thereforeU+02235 ∵ \(\because\) \because becauseU+0223F ∿ \(\sinewave\) \sinewave sine waveU+022A4 ⊤ \(\top\) \top topU+022A5 ⊥ \(\bot\) \bot bottomU+022B9 ⊹ \(\hermitmatrix\) \hermitmatrix hermitian conjugate matrixU+022BE ⊾ \(\measuredrightangle\) \measuredrightangle right angle-measured [with arc]U+022BF ⊿ \(\varlrtriangle\) \varlrtriangle right triangleU+022EF ⋯ \(\unicodecdots\) \unicodecdots three dots, centeredU+02300 ⌀ \(\diameter\) \diameter diameter signU+02302 ⌂ \(\house\) \house houseU+02310 ⌐ \(\invnot\) \invnot reverse notU+02311 ⌑ \(\sqlozenge\) \sqlozenge square lozengeU+02312 ⌒ \(\profline\) \profline profile of a lineU+02313 ⌓ \(\profsurf\) \profsurf profile of a surfaceU+02317 ⌗ \(\viewdata\) \viewdata viewdata squareU+02319 ⌙ \(\turnednot\) \turnednot turned not signU+02320 ⌠ \(\inttop\) \inttop top half integralU+02321 ⌡ \(\intbottom\) \intbottom bottom half integralU+0232C ⌬ \(\varhexagonlrbonds\) \varhexagonlrbonds six carbon ring, corner down, double bonds lower right etcU+02332 ⌲ \(\conictaper\) \conictaper conical taperU+02336 ⌶ \(\topbot\) \topbot top and bottomU+02340 ⍀ \(\APLnotbackslash\) \APLnotbackslash apl functional symbol backslash barU+02353 ⍓ \(\APLboxupcaret\) \APLboxupcaret boxed up caretU+02370 ⍰ \(\APLboxquestion\) \APLboxquestion boxed question markU+0237C ⍼ \(\rangledownzigzagarrow\) \rangledownzigzagarrow right angle with downwards zigzagarrowU+02394 ⎔ \(\hexagon\) \hexagon horizontal benzene ring [hexagon flat open]U+0239B ⎛ \(\lparenuend\) \lparenuend left parenthesis upper hookU+0239C ⎜ \(\lparenextender\) \lparenextender left parenthesis extensionU+0239D ⎝ \(\lparenlend\) \lparenlend left parenthesis lower hookU+0239E ⎞ \(\rparenuend\) \rparenuend right parenthesis upper hookU+0239F ⎟ \(\rparenextender\) \rparenextender right parenthesis extensionU+023A0 ⎠ \(\rparenlend\) \rparenlend right parenthesis lower hookU+023A1 ⎡ \(\lbrackuend\) \lbrackuend left square bracket upper cornerU+023A2 ⎢ \(\lbrackextender\) \lbrackextender left square bracket extensionU+023A3 ⎣ \(\lbracklend\) \lbracklend left square bracket lower cornerU+023A4 ⎤ \(\rbrackuend\) \rbrackuend right square bracket upper cornerU+023A5 ⎥ \(\rbrackextender\) \rbrackextender right square bracket extensionU+023A6 ⎦ \(\rbracklend\) \rbracklend right square bracket lower cornerU+023A7 ⎧ \(\lbraceuend\) \lbraceuend left curly bracket upper hookU+023A8 ⎨ \(\lbracemid\) \lbracemid left curly bracket middle pieceU+023A9 ⎩ \(\lbracelend\) \lbracelend left curly bracket lower hookU+023AA ⎪ \(\vbraceextender\) \vbraceextender curly bracket extensionU+023AB ⎫ \(\rbraceuend\) \rbraceuend right curly bracket upper hookU+023AC ⎬ \(\rbracemid\) \rbracemid right curly bracket middle pieceU+023AD ⎭ \(\rbracelend\) \rbracelend right curly bracket lower hookU+023AE ⎮ \(\intextender\) \intextender integral extensionU+023AF ⎯ \(\harrowextender\) \harrowextender horizontal line extension (used to extend arrows)U+023B2 ⎲ \(\sumtop\) \sumtop summation topU+023B3 ⎳ \(\sumbottom\) \sumbottom summation bottomU+023B6 ⎶ \(\bbrktbrk\) \bbrktbrk bottom square bracket over top square bracketU+023B7 ⎷ \(\sqrtbottom\) \sqrtbottom radical symbol bottomU+023B8 ⎸ \(\lvboxline\) \lvboxline left vertical box lineU+023B9 ⎹ \(\rvboxline\) \rvboxline right vertical box lineU+023CE ⏎ \(\varcarriagereturn\) \varcarriagereturn return symbolU+023E0 ⏠ \(\obrbrak\) \obrbrak top tortoise shell bracket (mathematical use)U+023E1 ⏡ \(\ubrbrak\) \ubrbrak bottom tortoise shell bracket (mathematical use)U+023E2 ⏢ \(\trapezium\) \trapezium white trapeziumU+023E3 ⏣ \(\benzenr\) \benzenr benzene ring with circleU+023E4 ⏤ \(\strns\) \strns straightnessU+023E5 ⏥ \(\fltns\) \fltns flatnessU+023E6 ⏦ \(\accurrent\) \accurrent ac currentU+023E7 ⏧ \(\elinters\) \elinters electrical intersectionU+02422 ␢ \(\blanksymbol\) \blanksymbol blank symbolU+02423 ␣ \(\mathvisiblespace\) \mathvisiblespace open boxU+02506 ┆ \(\bdtriplevdash\) \bdtriplevdash doubly broken vertU+02580 ▀ \(\blockuphalf\) \blockuphalf upper half blockU+02584 ▄ \(\blocklowhalf\) \blocklowhalf lower half blockU+02588 █ \(\blockfull\) \blockfull full blockU+0258C ▌ \(\blocklefthalf\) \blocklefthalf left half blockU+02590 ▐ \(\blockrighthalf\) \blockrighthalf right half blockU+02591 ░ \(\blockqtrshaded\) \blockqtrshaded 25% shaded blockU+02592 ▒ \(\blockhalfshaded\) \blockhalfshaded 50% shaded blockU+02593 ▓ \(\blockthreeqtrshaded\) \blockthreeqtrshaded 75% shaded blockU+025A0 ■ \(\mdlgblksquare\) \mdlgblksquare square, filledU+025A1 □ \(\mdlgwhtsquare\) \mdlgwhtsquare square, openU+025A2 ▢ \(\squoval\) \squoval white square with rounded cornersU+025A3 ▣ \(\blackinwhitesquare\) \blackinwhitesquare white square containing black small squareU+025A4 ▤ \(\squarehfill\) \squarehfill square, horizontal rule filledU+025A5 ▥ \(\squarevfill\) \squarevfill square, vertical rule filledU+025A6 ▦ \(\squarehvfill\) \squarehvfill square with orthogonal crosshatch fillU+025A7 ▧ \(\squarenwsefill\) \squarenwsefill square, nw-to-se rule filledU+025A8 ▨ \(\squareneswfill\) \squareneswfill square, ne-to-sw rule filledU+025A9 ▩ \(\squarecrossfill\) \squarecrossfill square with diagonal crosshatch fillU+025AA ▪ \(\smblksquare\) \smblksquare /blacksquare - sq bullet, filledU+025AB ▫ \(\smwhtsquare\) \smwhtsquare white small squareU+025AC ▬ \(\hrectangleblack\) \hrectangleblack black rectangleU+025AD ▭ \(\hrectangle\) \hrectangle horizontal rectangle, openU+025AE ▮ \(\vrectangleblack\) \vrectangleblack black vertical rectangleU+025AF ▯ \(\vrectangle\) \vrectangle rectangle, white (vertical)U+025B0 ▰ \(\parallelogramblack\) \parallelogramblack black parallelogramU+025B1 ▱ \(\parallelogram\) \parallelogram parallelogram, openU+025B2 ▲ \(\bigblacktriangleup\) \bigblacktriangleup black up-pointing triangleU+025B4 ▴ \(\blacktriangle\) \blacktriangle up triangle, filledU+025B6 ▶ \(\blacktriangleright\) \blacktriangleright (large) right triangle, filledU+025B8 ▸ \(\smallblacktriangleright\) \smallblacktriangleright right triangle, filledU+025B9 ▹ \(\smalltriangleright\) \smalltriangleright right triangle, openU+025BA ► \(\blackpointerright\) \blackpointerright black right-pointing pointerU+025BB ▻ \(\whitepointerright\) \whitepointerright white right-pointing pointerU+025BC ▼ \(\bigblacktriangledown\) \bigblacktriangledown big down triangle, filledU+025BD ▽ \(\bigtriangledown\) \bigtriangledown big down triangle, openU+025BE ▾ \(\blacktriangledown\) \blacktriangledown down triangle, filledU+025BF ▿ \(\triangledown\) \triangledown down triangle, openU+025C0 ◀ \(\blacktriangleleft\) \blacktriangleleft (large) left triangle, filledU+025C2 ◂ \(\smallblacktriangleleft\) \smallblacktriangleleft left triangle, filledU+025C3 ◃ \(\smalltriangleleft\) \smalltriangleleft left triangle, openU+025C4 ◄ \(\blackpointerleft\) \blackpointerleft black left-pointing pointerU+025C5 ◅ \(\whitepointerleft\) \whitepointerleft white left-pointing pointerU+025C6 ◆ \(\mdlgblkdiamond\) \mdlgblkdiamond black diamondU+025C7 ◇ \(\mdlgwhtdiamond\) \mdlgwhtdiamond white diamond; diamond, openU+025C8 ◈ \(\blackinwhitediamond\) \blackinwhitediamond white diamond containing black small diamondU+025C9 ◉ \(\fisheye\) \fisheye fisheyeU+025CA ◊ \(\mdlgwhtlozenge\) \mdlgwhtlozenge lozenge or total markU+025CC ◌ \(\dottedcircle\) \dottedcircle dotted circleU+025CD ◍ \(\circlevertfill\) \circlevertfill circle with vertical fillU+025CE ◎ \(\bullseye\) \bullseye bullseyeU+025CF ● \(\mdlgblkcircle\) \mdlgblkcircle circle, filledU+025D0 ◐ \(\circlelefthalfblack\) \circlelefthalfblack circle, filled left half [harvey ball]U+025D1 ◑ \(\circlerighthalfblack\) \circlerighthalfblack circle, filled right halfU+025D2 ◒ \(\circlebottomhalfblack\) \circlebottomhalfblack circle, filled bottom halfU+025D3 ◓ \(\circletophalfblack\) \circletophalfblack circle, filled top halfU+025D4 ◔ \(\circleurquadblack\) \circleurquadblack circle with upper right quadrant blackU+025D5 ◕ \(\blackcircleulquadwhite\) \blackcircleulquadwhite circle with all but upper left quadrant blackU+025D6 ◖ \(\blacklefthalfcircle\) \blacklefthalfcircle left half black circleU+025D7 ◗ \(\blackrighthalfcircle\) \blackrighthalfcircle right half black circleU+025D8 ◘ \(\inversebullet\) \inversebullet inverse bulletU+025D9 ◙ \(\inversewhitecircle\) \inversewhitecircle inverse white circleU+025DA ◚ \(\invwhiteupperhalfcircle\) \invwhiteupperhalfcircle upper half inverse white circleU+025DB ◛ \(\invwhitelowerhalfcircle\) \invwhitelowerhalfcircle lower half inverse white circleU+025DC ◜ \(\ularc\) \ularc upper left quadrant circular arcU+025DD ◝ \(\urarc\) \urarc upper right quadrant circular arcU+025DE ◞ \(\lrarc\) \lrarc lower right quadrant circular arcU+025DF ◟ \(\llarc\) \llarc lower left quadrant circular arcU+025E0 ◠ \(\topsemicircle\) \topsemicircle upper half circleU+025E1 ◡ \(\botsemicircle\) \botsemicircle lower half circleU+025E2 ◢ \(\lrblacktriangle\) \lrblacktriangle lower right triangle, filledU+025E3 ◣ \(\llblacktriangle\) \llblacktriangle lower left triangle, filledU+025E4 ◤ \(\ulblacktriangle\) \ulblacktriangle upper left triangle, filledU+025E5 ◥ \(\urblacktriangle\) \urblacktriangle upper right triangle, filledU+025E6 ◦ \(\smwhtcircle\) \smwhtcircle white bulletU+025E7 ◧ \(\squareleftblack\) \squareleftblack square, filled left halfU+025E8 ◨ \(\squarerightblack\) \squarerightblack square, filled right halfU+025E9 ◩ \(\squareulblack\) \squareulblack square, filled top left cornerU+025EA ◪ \(\squarelrblack\) \squarelrblack square, filled bottom right cornerU+025EC ◬ \(\trianglecdot\) \trianglecdot triangle with centered dotU+025ED ◭ \(\triangleleftblack\) \triangleleftblack up-pointing triangle with left half blackU+025EE ◮ \(\trianglerightblack\) \trianglerightblack up-pointing triangle with right half blackU+025EF ◯ \(\lgwhtcircle\) \lgwhtcircle large circleU+025F0 ◰ \(\squareulquad\) \squareulquad white square with upper left quadrantU+025F1 ◱ \(\squarellquad\) \squarellquad white square with lower left quadrantU+025F2 ◲ \(\squarelrquad\) \squarelrquad white square with lower right quadrantU+025F3 ◳ \(\squareurquad\) \squareurquad white square with upper right quadrantU+025F4 ◴ \(\circleulquad\) \circleulquad white circle with upper left quadrantU+025F5 ◵ \(\circlellquad\) \circlellquad white circle with lower left quadrantU+025F6 ◶ \(\circlelrquad\) \circlelrquad white circle with lower right quadrantU+025F7 ◷ \(\circleurquad\) \circleurquad white circle with upper right quadrantU+025F8 ◸ \(\ultriangle\) \ultriangle upper left triangleU+025F9 ◹ \(\urtriangle\) \urtriangle upper right triangleU+025FA ◺ \(\lltriangle\) \lltriangle lower left triangleU+025FB ◻ \(\mdwhtsquare\) \mdwhtsquare white medium squareU+025FC ◼ \(\mdblksquare\) \mdblksquare black medium squareU+025FD ◽ \(\mdsmwhtsquare\) \mdsmwhtsquare white medium small squareU+025FE ◾ \(\mdsmblksquare\) \mdsmblksquare black medium small squareU+025FF ◿ \(\lrtriangle\) \lrtriangle lower right triangleU+02605 ★ \(\bigstar\) \bigstar star, filledU+02606 ☆ \(\bigwhitestar\) \bigwhitestar star, openU+02609 ☉ \(\astrosun\) \astrosun sunU+02621 ☡ \(\danger\) \danger dangerous bend (caution sign)U+0263B ☻ \(\blacksmiley\) \blacksmiley black smiling faceU+0263C ☼ \(\sun\) \sun white sun with raysU+0263D ☽ \(\rightmoon\) \rightmoon first quarter moonU+0263E ☾ \(\leftmoon\) \leftmoon last quarter moonU+02640 ♀ \(\female\) \female venus, femaleU+02642 ♂ \(\male\) \male mars, maleU+02660 ♠ \(\spadesuit\) \spadesuit spades suit symbolU+02661 ♡ \(\heartsuit\) \heartsuit heart suit symbolU+02662 ♢ \(\diamondsuit\) \diamondsuit diamond suit symbolU+02663 ♣ \(\clubsuit\) \clubsuit club suit symbolU+02664 ♤ \(\varspadesuit\) \varspadesuit spade, white (card suit)U+02665 ♥ \(\varheartsuit\) \varheartsuit filled heart (card suit)U+02666 ♦ \(\vardiamondsuit\) \vardiamondsuit filled diamond (card suit)U+02667 ♧ \(\varclubsuit\) \varclubsuit club, white (card suit)U+02669 ♩ \(\quarternote\) \quarternote music note (sung text sign)U+0266A ♪ \(\eighthnote\) \eighthnote eighth noteU+0266B ♫ \(\twonotes\) \twonotes beamed eighth notesU+0266D ♭ \(\flat\) \flat musical flatU+0266E ♮ \(\natural\) \natural music naturalU+0266F ♯ \(\sharp\) \sharp musical sharpU+0267E ♾ \(\acidfree\) \acidfree permanent paper signU+02680 ⚀ \(\dicei\) \dicei die face-1U+02681 ⚁ \(\diceii\) \diceii die face-2U+02682 ⚂ \(\diceiii\) \diceiii die face-3U+02683 ⚃ \(\diceiv\) \diceiv die face-4U+02684 ⚄ \(\dicev\) \dicev die face-5U+02685 ⚅ \(\dicevi\) \dicevi die face-6U+02686 ⚆ \(\circledrightdot\) \circledrightdot white circle with dot rightU+02687 ⚇ \(\circledtwodots\) \circledtwodots white circle with two dotsU+02688 ⚈ \(\blackcircledrightdot\) \blackcircledrightdot black circle with white dot rightU+02689 ⚉ \(\blackcircledtwodots\) \blackcircledtwodots black circle with two white dotsU+026A5 ⚥ \(\Hermaphrodite\) \Hermaphrodite male and female signU+026AA ⚪ \(\mdwhtcircle\) \mdwhtcircle medium white circleU+026AB ⚫ \(\mdblkcircle\) \mdblkcircle medium black circleU+026AC ⚬ \(\mdsmwhtcircle\) \mdsmwhtcircle medium small white circleU+026B2 ⚲ \(\neuter\) \neuter neuterU+02713 ✓ \(\checkmark\) \checkmark tick, check markU+02720 ✠ \(\maltese\) \maltese maltese crossU+0272A ✪ \(\circledstar\) \circledstar circled white starU+02736 ✶ \(\varstar\) \varstar six pointed black starU+0273D ✽ \(\dingasterisk\) \dingasterisk heavy teardrop-spoked asteriskU+0279B ➛ \(\draftingarrow\) \draftingarrow right arrow with bold head (drafting)U+027C0 ⟀ \(\threedangle\) \threedangle three dimensional angleU+027C1 ⟁ \(\whiteinwhitetriangle\) \whiteinwhitetriangle white triangle containing small white triangleU+027C3 ⟃ \(\subsetcirc\) \subsetcirc open subsetU+027C4 ⟄ \(\supsetcirc\) \supsetcirc open supersetU+027D0 ⟐ \(\diamondcdot\) \diamondcdot white diamond with centred dotU+0292B ⤫ \(\rdiagovfdiag\) \rdiagovfdiag rising diagonal crossing falling diagonalU+0292C ⤬ \(\fdiagovrdiag\) \fdiagovrdiag falling diagonal crossing rising diagonalU+0292D ⤭ \(\seovnearrow\) \seovnearrow south east arrow crossing north east arrowU+0292E ⤮ \(\neovsearrow\) \neovsearrow north east arrow crossing south east arrowU+0292F ⤯ \(\fdiagovnearrow\) \fdiagovnearrow falling diagonal crossing north eastarrowU+02930 ⤰ \(\rdiagovsearrow\) \rdiagovsearrow rising diagonal crossing south eastarrowU+02931 ⤱ \(\neovnwarrow\) \neovnwarrow north east arrow crossing north west arrowU+02932 ⤲ \(\nwovnearrow\) \nwovnearrow north west arrow crossing north east arrowU+02934 ⤴ \(\uprightcurvearrow\) \uprightcurvearrow arrow pointing rightwards then curving upwardsU+02935 ⤵ \(\downrightcurvedarrow\) \downrightcurvedarrow arrow pointing rightwards then curving downwardsU+02981 ⦁ \(\mdsmblkcircle\) \mdsmblkcircle z notation spotU+02999 ⦙ \(\fourvdots\) \fourvdots dotted fenceU+0299A ⦚ \(\vzigzag\) \vzigzag vertical zigzag lineU+0299B ⦛ \(\measuredangleleft\) \measuredangleleft measured angle opening leftU+0299C ⦜ \(\rightanglesqr\) \rightanglesqr right angle variant with squareU+0299D ⦝ \(\rightanglemdot\) \rightanglemdot measured right angle with dotU+0299E ⦞ \(\angles\) \angles angle with s insideU+0299F ⦟ \(\angdnr\) \angdnr acute angleU+029A0 ⦠ \(\gtlpar\) \gtlpar spherical angle opening leftU+029A1 ⦡ \(\sphericalangleup\) \sphericalangleup spherical angle opening upU+029A2 ⦢ \(\turnangle\) \turnangle turned angleU+029A3 ⦣ \(\revangle\) \revangle reversed angleU+029A4 ⦤ \(\angleubar\) \angleubar angle with underbarU+029A5 ⦥ \(\revangleubar\) \revangleubar reversed angle with underbarU+029A6 ⦦ \(\wideangledown\) \wideangledown oblique angle opening upU+029A7 ⦧ \(\wideangleup\) \wideangleup oblique angle opening downU+029A8 ⦨ \(\measanglerutone\) \measanglerutone measured angle with open arm ending in arrow pointing up and rightU+029A9 ⦩ \(\measanglelutonw\) \measanglelutonw measured angle with open arm ending in arrow pointing up and leftU+029AA ⦪ \(\measanglerdtose\) \measanglerdtose measured angle with open arm ending in arrow pointing down and rightU+029AB ⦫ \(\measangleldtosw\) \measangleldtosw measured angle with open arm ending in arrow pointing down and leftU+029AC ⦬ \(\measangleurtone\) \measangleurtone measured angle with open arm ending in arrow pointing right andupU+029AD ⦭ \(\measangleultonw\) \measangleultonw measured angle with open arm ending in arrow pointing left andupU+029AE ⦮ \(\measangledrtose\) \measangledrtose measured angle with open arm ending in arrow pointing right and downU+029AF ⦯ \(\measangledltosw\) \measangledltosw measured angle with open arm ending in arrow pointing left and downU+029B0 ⦰ \(\revemptyset\) \revemptyset reversed empty setU+029B1 ⦱ \(\emptysetobar\) \emptysetobar empty set with overbarU+029B2 ⦲ \(\emptysetocirc\) \emptysetocirc empty set with small circle aboveU+029B3 ⦳ \(\emptysetoarr\) \emptysetoarr empty set with right arrow aboveU+029B4 ⦴ \(\emptysetoarrl\) \emptysetoarrl empty set with left arrow aboveU+029BA ⦺ \(\obot\) \obot circle divided by horizontal bar and top half divided by vertical barU+029BB ⦻ \(\olcross\) \olcross circle with superimposed xU+029BC ⦼ \(\odotslashdot\) \odotslashdot circled anticlockwise-rotated divi-sion signU+029BD ⦽ \(\uparrowoncircle\) \uparrowoncircle up arrow through circleU+029BE ⦾ \(\circledwhitebullet\) \circledwhitebullet circled white bulletU+029BF ⦿ \(\circledbullet\) \circledbullet circled bulletU+029C2 ⧂ \(\cirscir\) \cirscir circle with small circle to the rightU+029C3 ⧃ \(\cirE\) \cirE circle with two horizontal strokes tothe rightU+029C9 ⧉ \(\boxonbox\) \boxonbox two joined squaresU+029CA ⧊ \(\triangleodot\) \triangleodot triangle with dot aboveU+029CB ⧋ \(\triangleubar\) \triangleubar triangle with underbarU+029CC ⧌ \(\triangles\) \triangles s in triangleU+029DC ⧜ \(\iinfin\) \iinfin incomplete infinityU+029DD ⧝ \(\tieinfty\) \tieinfty tie over infinityU+029DE ⧞ \(\nvinfty\) \nvinfty infinity negated with vertical barU+029E0 ⧠ \(\laplac\) \laplac square with contoured outlineU+029E7 ⧧ \(\thermod\) \thermod thermodynamicU+029E8 ⧨ \(\downtriangleleftblack\) \downtriangleleftblack down-pointing triangle with left half blackU+029E9 ⧩ \(\downtrianglerightblack\) \downtrianglerightblack down-pointing triangle with right half blackU+029EA ⧪ \(\blackdiamonddownarrow\) \blackdiamonddownarrow black diamond with down arrowU+029EC ⧬ \(\circledownarrow\) \circledownarrow white circle with down arrowU+029ED ⧭ \(\blackcircledownarrow\) \blackcircledownarrow black circle with down arrowU+029EE ⧮ \(\errbarsquare\) \errbarsquare error-barred white squareU+029EF ⧯ \(\errbarblacksquare\) \errbarblacksquare error-barred black squareU+029F0 ⧰ \(\errbardiamond\) \errbardiamond error-barred white diamondU+029F1 ⧱ \(\errbarblackdiamond\) \errbarblackdiamond error-barred black diamondU+029F2 ⧲ \(\errbarcircle\) \errbarcircle error-barred white circleU+029F3 ⧳ \(\errbarblackcircle\) \errbarblackcircle error-barred black circleU+02AE1 ⫡ \(\perps\) \perps perpendicular with sU+02AF1 ⫱ \(\topcir\) \topcir down tack with circle belowU+02B12 ⬒ \(\squaretopblack\) \squaretopblack square with top half blackU+02B13 ⬓ \(\squarebotblack\) \squarebotblack square with bottom half blackU+02B14 ⬔ \(\squareurblack\) \squareurblack square with upper right diagonal half blackU+02B15 ⬕ \(\squarellblack\) \squarellblack square with lower left diagonal half blackU+02B16 ⬖ \(\diamondleftblack\) \diamondleftblack diamond with left half blackU+02B17 ⬗ \(\diamondrightblack\) \diamondrightblack diamond with right half blackU+02B18 ⬘ \(\diamondtopblack\) \diamondtopblack diamond with top half blackU+02B19 ⬙ \(\diamondbotblack\) \diamondbotblack diamond with bottom half blackU+02B1A ⬚ \(\dottedsquare\) \dottedsquare dotted squareU+02B1B ⬛︎ \(\lgblksquare\) \lgblksquare black large squareU+02B1C ⬜︎ \(\lgwhtsquare\) \lgwhtsquare white large squareU+02B1D ⬝ \(\vysmblksquare\) \vysmblksquare black very small squareU+02B1E ⬞ \(\vysmwhtsquare\) \vysmwhtsquare white very small squareU+02B1F ⬟ \(\pentagonblack\) \pentagonblack black pentagonU+02B20 ⬠ \(\pentagon\) \pentagon white pentagonU+02B21 ⬡ \(\varhexagon\) \varhexagon white hexagonU+02B22 ⬢ \(\varhexagonblack\) \varhexagonblack black hexagonU+02B23 ⬣ \(\hexagonblack\) \hexagonblack horizontal black hexagonU+02B24 ⬤ \(\lgblkcircle\) \lgblkcircle black large circleU+02B25 ⬥ \(\mdblkdiamond\) \mdblkdiamond black medium diamondU+02B26 ⬦ \(\mdwhtdiamond\) \mdwhtdiamond white medium diamondU+02B27 ⬧ \(\mdblklozenge\) \mdblklozenge black medium lozengeU+02B28 ⬨ \(\mdwhtlozenge\) \mdwhtlozenge white medium lozengeU+02B29 ⬩ \(\smblkdiamond\) \smblkdiamond black small diamondU+02B2A ⬪ \(\smblklozenge\) \smblklozenge black small lozengeU+02B2B ⬫ \(\smwhtlozenge\) \smwhtlozenge white small lozengeU+02B2C ⬬ \(\blkhorzoval\) \blkhorzoval black horizontal ellipseU+02B2D ⬭ \(\whthorzoval\) \whthorzoval white horizontal ellipseU+02B2E ⬮ \(\blkvertoval\) \blkvertoval black vertical ellipseU+02B2F ⬯ \(\whtvertoval\) \whtvertoval white vertical ellipseU+02B50 ⭐︎ \(\medwhitestar\) \medwhitestar white medium starU+02B51 ⭑︎ \(\medblackstar\) \medblackstar black medium starU+02B52 ⭒ \(\smwhitestar\) \smwhitestar white small starU+02B53 ⭓ \(\rightpentagonblack\) \rightpentagonblack black right-pointing pentagonU+02B54 ⭔ \(\rightpentagon\) \rightpentagon white right-pointing pentagonU+03012 〒 \(\postalmark\) \postalmark postal markU+03030 〰 \(\hzigzag\) \hzigzag zigzagU+0003C < \(\less\) \less less-than sign r:U+0003D = \(\equal\) \equal equals sign r:U+0003E > \(\greater\) \greater greater-than sign r:U+02050 ⁐ \(\closure\) \closure close upU+02190 ← \(\leftarrow\) \leftarrow /leftarrow /gets a: leftward arrowU+02191 ↑ \(\uparrow\) \uparrow upward arrowU+02192 → \(\rightarrow\) \rightarrow /rightarrow /to a: rightward arrowU+02193 ↓ \(\downarrow\) \downarrow downward arrowU+02194 ↔ \(\leftrightarrow\) \leftrightarrow left and right arrowU+02195 ↕ \(\updownarrow\) \updownarrow up and down arrowU+02196 ↖ \(\nwarrow\) \nwarrow nw pointing arrowU+02197 ↗ \(\nearrow\) \nearrow ne pointing arrowU+02198 ↘ \(\searrow\) \searrow se pointing arrowU+02199 ↙ \(\swarrow\) \swarrow sw pointing arrowU+0219A ↚ \(\nleftarrow\) \nleftarrow not left arrowU+0219B ↛ \(\nrightarrow\) \nrightarrow not right arrowU+0219C ↜ \(\leftwavearrow\) \leftwavearrow left arrow-wavyU+0219D ↝ \(\rightwavearrow\) \rightwavearrow right arrow-wavyU+0219E ↞ \(\twoheadleftarrow\) \twoheadleftarrow left two-headed arrowU+0219F ↟ \(\twoheaduparrow\) \twoheaduparrow up two-headed arrowU+021A0 ↠ \(\twoheadrightarrow\) \twoheadrightarrow right two-headed arrowU+021A1 ↡ \(\twoheaddownarrow\) \twoheaddownarrow down two-headed arrowU+021A2 ↢ \(\leftarrowtail\) \leftarrowtail left arrow-tailedU+021A3 ↣ \(\rightarrowtail\) \rightarrowtail right arrow-tailedU+021A4 ↤ \(\mapsfrom\) \mapsfrom maps to, leftwardU+021A5 ↥ \(\mapsup\) \mapsup maps to, upwardU+021A6 ↦ \(\mapsto\) \mapsto maps to, rightwardU+021A7 ↧ \(\mapsdown\) \mapsdown maps to, downwardU+021A9 ↩ \(\hookleftarrow\) \hookleftarrow left arrow-hookedU+021AA ↪ \(\hookrightarrow\) \hookrightarrow right arrow-hookedU+021AB ↫ \(\looparrowleft\) \looparrowleft left arrow-loopedU+021AC ↬ \(\looparrowright\) \looparrowright right arrow-loopedU+021AD ↭ \(\leftrightsquigarrow\) \leftrightsquigarrow left and right arr-wavyU+021AE ↮ \(\nleftrightarrow\) \nleftrightarrow not left and right arrowU+021AF ↯ \(\downzigzagarrow\) \downzigzagarrow downwards zigzag arrowU+021B0 ↰ \(\Lsh\) \Lsh /lsh a:U+021B1 ↱ \(\Rsh\) \Rsh /rsh a:U+021B2 ↲ \(\Ldsh\) \Ldsh left down angled arrowU+021B3 ↳ \(\Rdsh\) \Rdsh right down angled arrowU+021B6 ↶ \(\curvearrowleft\) \curvearrowleft left curved arrowU+021B7 ↷ \(\curvearrowright\) \curvearrowright right curved arrowU+021BC ↼ \(\leftharpoonup\) \leftharpoonup left harpoon-upU+021BD ↽ \(\leftharpoondown\) \leftharpoondown left harpoon-downU+021BE ↾ \(\upharpoonright\) \upharpoonright /upharpoonright /restriction a: up harpoon-rightU+021BF ↿ \(\upharpoonleft\) \upharpoonleft up harpoon-leftU+021C0 ⇀ \(\rightharpoonup\) \rightharpoonup right harpoon-upU+021C1 ⇁ \(\rightharpoondown\) \rightharpoondown right harpoon-downU+021C2 ⇂ \(\downharpoonright\) \downharpoonright down harpoon-rightU+021C3 ⇃ \(\downharpoonleft\) \downharpoonleft down harpoon-leftU+021C4 ⇄ \(\rightleftarrows\) \rightleftarrows right arrow over left arrowU+021C5 ⇅ \(\updownarrows\) \updownarrows up arrow, down arrowU+021C6 ⇆ \(\leftrightarrows\) \leftrightarrows left arrow over right arrowU+021C7 ⇇ \(\leftleftarrows\) \leftleftarrows two left arrowsU+021C8 ⇈ \(\upuparrows\) \upuparrows two up arrowsU+021C9 ⇉ \(\rightrightarrows\) \rightrightarrows two right arrowsU+021CA ⇊ \(\downdownarrows\) \downdownarrows two down arrowsU+021CB ⇋ \(\leftrightharpoons\) \leftrightharpoons left harpoon over rightU+021CC ⇌ \(\rightleftharpoons\) \rightleftharpoons right harpoon over leftU+021CD ⇍ \(\nLeftarrow\) \nLeftarrow not implied byU+021CE ⇎ \(\nLeftrightarrow\) \nLeftrightarrow not left and right double arrowsU+021CF ⇏ \(\nRightarrow\) \nRightarrow not impliesU+021D0 ⇐ \(\Leftarrow\) \Leftarrow is implied byU+021D1 ⇑ \(\Uparrow\) \Uparrow up double arrowU+021D2 ⇒ \(\Rightarrow\) \Rightarrow impliesU+021D3 ⇓ \(\Downarrow\) \Downarrow down double arrowU+021D4 ⇔ \(\Leftrightarrow\) \Leftrightarrow left and right double arrowU+021D5 ⇕ \(\Updownarrow\) \Updownarrow up and down double arrowU+021D6 ⇖ \(\Nwarrow\) \Nwarrow nw pointing double arrowU+021D7 ⇗ \(\Nearrow\) \Nearrow ne pointing double arrowU+021D8 ⇘ \(\Searrow\) \Searrow se pointing double arrowU+021D9 ⇙ \(\Swarrow\) \Swarrow sw pointing double arrowU+021DA ⇚ \(\Lleftarrow\) \Lleftarrow left triple arrowU+021DB ⇛ \(\Rrightarrow\) \Rrightarrow right triple arrowU+021DC ⇜ \(\leftsquigarrow\) \leftsquigarrow leftwards squiggle arrowU+021DD ⇝ \(\rightsquigarrow\) \rightsquigarrow rightwards squiggle arrowU+021E4 ⇤ \(\barleftarrow\) \barleftarrow leftwards arrow to barU+021E5 ⇥ \(\rightarrowbar\) \rightarrowbar rightwards arrow to barU+021F4 ⇴ \(\circleonrightarrow\) \circleonrightarrow right arrow with small circleU+021F5 ⇵ \(\downuparrows\) \downuparrows downwards arrow leftwards ofupwards arrowU+021F6 ⇶ \(\rightthreearrows\) \rightthreearrows three rightwards arrowsU+021F7 ⇷ \(\nvleftarrow\) \nvleftarrow leftwards arrow with vertical strokeU+021F8 ⇸ \(\nvrightarrow\) \nvrightarrow rightwards arrow with vertical strokeU+021F9 ⇹ \(\nvleftrightarrow\) \nvleftrightarrow left right arrow with vertical strokeU+021FA ⇺ \(\nVleftarrow\) \nVleftarrow leftwards arrow with double verticalstrokeU+021FB ⇻ \(\nVrightarrow\) \nVrightarrow rightwards arrow with double vertical strokeU+021FC ⇼ \(\nVleftrightarrow\) \nVleftrightarrow left right arrow with double vertical strokeU+021FD ⇽ \(\leftarrowtriangle\) \leftarrowtriangle leftwards open-headed arrowU+021FE ⇾ \(\rightarrowtriangle\) \rightarrowtriangle rightwards open-headed arrowU+021FF ⇿ \(\leftrightarrowtriangle\) \leftrightarrowtriangle left right open-headed arrowU+02208 ∈ \(\in\) \in set membership, variantU+02209 ∉ \(\notin\) \notin negated set membershipU+0220A ∊ \(\smallin\) \smallin set membership (small set membership)U+0220B ∋ \(\ni\) \ni contains, variantU+0220C ∌ \(\nni\) \nni negated contains, variantU+0220D ∍ \(\smallni\) \smallni /ni /owns r: contains (small contains as member)U+0221D ∝ \(\propto\) \propto is proportional toU+02223 ∣ \(\mid\) \mid /mid r:U+02224 ∤ \(\nmid\) \nmid negated midU+02225 ∥ \(\parallel\) \parallel parallelU+02226 ∦ \(\nparallel\) \nparallel not parallelU+02236 ∶ \(\mathratio\) \mathratio ratioU+02237 ∷ \(\Colon\) \Colon two colonsU+02239 ∹ \(\dashcolon\) \dashcolon excess (-:)U+0223A ∺ \(\dotsminusdots\) \dotsminusdots minus with four dots, geometric propertiesU+0223B ∻ \(\kernelcontraction\) \kernelcontraction homotheticU+0223C ∼ \(\sim\) \sim similarU+0223D ∽ \(\backsim\) \backsim reverse similarU+02241 ≁ \(\nsim\) \nsim not similarU+02242 ≂ \(\eqsim\) \eqsim equals, similarU+02243 ≃ \(\simeq\) \simeq similar, equalsU+02244 ≄ \(\nsime\) \nsime not similar, equalsU+02243 ≃ \(\sime\) \sime similar, equals (alias)U+02244 ≄ \(\nsimeq\) \nsimeq not similar, equals (alias)U+02245 ≅ \(\cong\) \cong congruent withU+02246 ≆ \(\simneqq\) \simneqq similar, not equals [vert only for 9573 entity]U+02247 ≇ \(\ncong\) \ncong not congruent withU+02248 ≈ \(\approx\) \approx approximateU+02249 ≉ \(\napprox\) \napprox not approximateU+0224A ≊ \(\approxeq\) \approxeq approximate, equalsU+0224B ≋ \(\approxident\) \approxident approximately identical toU+0224C ≌ \(\backcong\) \backcong all equal toU+0224D ≍ \(\asymp\) \asymp asymptotically equal toU+0224E ≎ \(\Bumpeq\) \Bumpeq bumpy equalsU+0224F ≏ \(\bumpeq\) \bumpeq bumpy equals, equalsU+02250 ≐ \(\doteq\) \doteq equals, single dot aboveU+02251 ≑ \(\Doteq\) \Doteq /doteqdot /doteq r: equals, even dotsU+02252 ≒ \(\fallingdotseq\) \fallingdotseq equals, falling dotsU+02253 ≓ \(\risingdotseq\) \risingdotseq equals, rising dotsU+02254 ≔ \(\coloneq\) \coloneq colon, equalsU+02255 ≕ \(\eqcolon\) \eqcolon equals, colonU+02256 ≖ \(\eqcirc\) \eqcirc circle on equals signU+02257 ≗ \(\circeq\) \circeq circle, equalsU+02258 ≘ \(\arceq\) \arceq arc, equals; corresponds toU+02259 ≙ \(\wedgeq\) \wedgeq corresponds to (wedge, equals)U+0225A ≚ \(\veeeq\) \veeeq logical or, equalsU+0225B ≛ \(\stareq\) \stareq star equalsU+0225C ≜ \(\triangleq\) \triangleq triangle, equalsU+0225D ≝ \(\eqdef\) \eqdef equals by definitionU+0225E ≞ \(\measeq\) \measeq measured by (m over equals)U+0225F ≟ \(\questeq\) \questeq equal with questionmarkU+02260 ≠ \(\ne\) \ne /ne /neq r: not equalU+02261 ≡ \(\equiv\) \equiv identical withU+02262 ≢ \(\nequiv\) \nequiv not identical withU+02263 ≣ \(\Equiv\) \Equiv strict equivalence (4 lines)U+02264 ≤ \(\leq\) \leq /leq /le r: less-than-or-equalU+02265 ≥ \(\geq\) \geq /geq /ge r: greater-than-or-equalU+02266 ≦ \(\leqq\) \leqq less, double equalsU+02267 ≧ \(\geqq\) \geqq greater, double equalsU+02268 ≨ \(\lneqq\) \lneqq less, not double equalsU+02269 ≩ \(\gneqq\) \gneqq greater, not double equalsU+0226A ≪ \(\ll\) \ll much less than, type 2U+0226B ≫ \(\gg\) \gg much greater than, type 2U+0226C ≬ \(\between\) \between betweenU+0226D ≭ \(\nasymp\) \nasymp not asymptotically equal toU+0226E ≮ \(\nless\) \nless not less-thanU+0226F ≯ \(\ngtr\) \ngtr not greater-thanU+02270 ≰ \(\nleq\) \nleq not less-than-or-equalU+02271 ≱ \(\ngeq\) \ngeq not greater-than-or-equalU+02272 ≲ \(\lesssim\) \lesssim less, similarU+02273 ≳ \(\gtrsim\) \gtrsim greater, similarU+02274 ≴ \(\nlesssim\) \nlesssim not less, similarU+02275 ≵ \(\ngtrsim\) \ngtrsim not greater, similarU+02276 ≶ \(\lessgtr\) \lessgtr less, greaterU+02277 ≷ \(\gtrless\) \gtrless greater, lessU+02278 ≸ \(\nlessgtr\) \nlessgtr not less, greaterU+02279 ≹ \(\ngtrless\) \ngtrless not greater, lessU+0227A ≺ \(\prec\) \prec precedesU+0227B ≻ \(\succ\) \succ succeedsU+0227C ≼ \(\preccurlyeq\) \preccurlyeq precedes, curly equalsU+0227D ≽ \(\succcurlyeq\) \succcurlyeq succeeds, curly equalsU+0227E ≾ \(\precsim\) \precsim precedes, similarU+0227F ≿ \(\succsim\) \succsim succeeds, similarU+02280 ⊀ \(\nprec\) \nprec not precedesU+02281 ⊁ \(\nsucc\) \nsucc not succeedsU+02282 ⊂ \(\subset\) \subset subset or is implied byU+02283 ⊃ \(\supset\) \supset superset or impliesU+02284 ⊄ \(\nsubset\) \nsubset not subset, variant [slash negation]U+02285 ⊅ \(\nsupset\) \nsupset not superset, variant [slash negation]U+02286 ⊆ \(\subseteq\) \subseteq subset, equalsU+02287 ⊇ \(\supseteq\) \supseteq superset, equalsU+02288 ⊈ \(\nsubseteq\) \nsubseteq not subset, equalsU+02289 ⊉ \(\nsupseteq\) \nsupseteq not superset, equalsU+0228A ⊊ \(\subsetneq\) \subsetneq subset, not equalsU+0228B ⊋ \(\supsetneq\) \supsetneq superset, not equalsU+0228F ⊏ \(\sqsubset\) \sqsubset square subsetU+02290 ⊐ \(\sqsupset\) \sqsupset square supersetU+02291 ⊑ \(\sqsubseteq\) \sqsubseteq square subset, equalsU+02292 ⊒ \(\sqsupseteq\) \sqsupseteq square superset, equalsU+022A2 ⊢ \(\vdash\) \vdash vertical, dashU+022A3 ⊣ \(\dashv\) \dashv dash, verticalU+022A6 ⊦ \(\assert\) \assert assertion (vertical, short dash)U+022A7 ⊧ \(\models\) \models models (vertical, short double dash)U+022A8 ⊨ \(\vDash\) \vDash vertical, double dashU+022A9 ⊩ \(\Vdash\) \Vdash double vertical, dashU+022AA ⊪ \(\Vvdash\) \Vvdash triple vertical, dashU+022AB ⊫ \(\VDash\) \VDash double vert, double dashU+022AC ⊬ \(\nvdash\) \nvdash not vertical, dashU+022AD ⊭ \(\nvDash\) \nvDash not vertical, double dashU+022AE ⊮ \(\nVdash\) \nVdash not double vertical, dashU+022AF ⊯ \(\nVDash\) \nVDash not double vert, double dashU+022B0 ⊰ \(\prurel\) \prurel element precedes under relationU+022B1 ⊱ \(\scurel\) \scurel succeeds under relationU+022B2 ⊲ \(\vartriangleleft\) \vartriangleleft left triangle, open, variantU+022B3 ⊳ \(\vartriangleright\) \vartriangleright right triangle, open, variantU+022B4 ⊴ \(\trianglelefteq\) \trianglelefteq left triangle, equalsU+022B5 ⊵ \(\trianglerighteq\) \trianglerighteq right triangle, equalsU+022B6 ⊶ \(\origof\) \origof original ofU+022B7 ⊷ \(\imageof\) \imageof image ofU+022B8 ⊸ \(\multimap\) \multimap /multimap a:U+022C8 ⋈ \(\bowtie\) \bowtie bowtieU+022CD ⋍ \(\backsimeq\) \backsimeq reverse similar, equalsU+022D0 ⋐ \(\Subset\) \Subset double subsetU+022D1 ⋑ \(\Supset\) \Supset double supersetU+022D4 ⋔ \(\pitchfork\) \pitchfork pitchforkU+022D5 ⋕ \(\equalparallel\) \equalparallel parallel, equal; equal or parallelU+022D6 ⋖ \(\lessdot\) \lessdot less than, with dotU+022D7 ⋗ \(\gtrdot\) \gtrdot greater than, with dotU+022D8 ⋘ \(\lll\) \lll /ll /lll /llless r: triple less-thanU+022D9 ⋙ \(\ggg\) \ggg /ggg /gg /gggtr r: triple greater-thanU+022DA ⋚ \(\lesseqgtr\) \lesseqgtr less, equals, greaterU+022DB ⋛ \(\gtreqless\) \gtreqless greater, equals, lessU+022DC ⋜ \(\eqless\) \eqless equal-or-lessU+022DD ⋝ \(\eqgtr\) \eqgtr equal-or-greaterU+022DE ⋞ \(\curlyeqprec\) \curlyeqprec curly equals, precedesU+022DF ⋟ \(\curlyeqsucc\) \curlyeqsucc curly equals, succeedsU+022E0 ⋠ \(\npreccurlyeq\) \npreccurlyeq not precedes, curly equalsU+022E1 ⋡ \(\nsucccurlyeq\) \nsucccurlyeq not succeeds, curly equalsU+022E2 ⋢ \(\nsqsubseteq\) \nsqsubseteq not, square subset, equalsU+022E3 ⋣ \(\nsqsupseteq\) \nsqsupseteq not, square superset, equalsU+022E4 ⋤ \(\sqsubsetneq\) \sqsubsetneq square subset, not equalsU+022E5 ⋥ \(\sqsupsetneq\) \sqsupsetneq square superset, not equalsU+022E6 ⋦ \(\lnsim\) \lnsim less, not similarU+022E7 ⋧ \(\gnsim\) \gnsim greater, not similarU+022E8 ⋨ \(\precnsim\) \precnsim precedes, not similarU+022E9 ⋩ \(\succnsim\) \succnsim succeeds, not similarU+022EA ⋪ \(\nvartriangleleft\) \nvartriangleleft not left triangleU+022EB ⋫ \(\nvartriangleright\) \nvartriangleright not right triangleU+022EC ⋬ \(\ntrianglelefteq\) \ntrianglelefteq not left triangle, equalsU+022ED ⋭ \(\ntrianglerighteq\) \ntrianglerighteq not right triangle, equalsU+022EE ⋮ \(\vdots\) \vdots vertical ellipsisU+022F0 ⋰ \(\adots\) \adots three dots, ascendingU+022F1 ⋱ \(\ddots\) \ddots three dots, descendingU+022F2 ⋲ \(\disin\) \disin element of with long horizontal strokeU+022F3 ⋳ \(\varisins\) \varisins element of with vertical bar at end ofhorizontal strokeU+022F4 ⋴ \(\isins\) \isins small element of with vertical bar atend of horizontal strokeU+022F5 ⋵ \(\isindot\) \isindot element of with dot aboveU+022F6 ⋶ \(\varisinobar\) \varisinobar element of with overbarU+022F7 ⋷ \(\isinobar\) \isinobar small element of with overbarU+022F8 ⋸ \(\isinvb\) \isinvb element of with underbarU+022F9 ⋹ \(\isinE\) \isinE element of with two horizontalstrokesU+022FA ⋺ \(\nisd\) \nisd contains with long horizontal strokeU+022FB ⋻ \(\varnis\) \varnis contains with vertical bar at end ofhorizontal strokeU+022FC ⋼ \(\nis\) \nis small contains with vertical bar atend of horizontal strokeU+022FD ⋽ \(\varniobar\) \varniobar contains with overbarU+022FE ⋾ \(\niobar\) \niobar small contains with overbarU+022FF ⋿ \(\bagmember\) \bagmember z notation bag membershipU+02322 ⌢ \(\frown\) \frown down curveU+02323 ⌣ \(\smile\) \smile up curveU+0233F ⌿ \(\APLnotslash\) \APLnotslash solidus, bar through (apl functional symbol slash bar)U+025B5 ▵ \(\vartriangle\) \vartriangle /triangle - up triangle, openU+027C2 ⟂ \(\perp\) \perp perpendicularU+027C8 ⟈ \(\bsolhsub\) \bsolhsub reverse solidus preceding subsetU+027C9 ⟉ \(\suphsol\) \suphsol superset preceding solidusU+027D2 ⟒ \(\upin\) \upin element of opening upwardsU+027D3 ⟓ \(\pullback\) \pullback lower right corner with dotU+027D4 ⟔ \(\pushout\) \pushout upper left corner with dotU+027DA ⟚ \(\DashVDash\) \DashVDash left and right double turnstileU+027DB ⟛ \(\dashVdash\) \dashVdash left and right tackU+027DC ⟜ \(\multimapinv\) \multimapinv left multimapU+027DD ⟝ \(\vlongdash\) \vlongdash long left tackU+027DE ⟞ \(\longdashv\) \longdashv long right tackU+027DF ⟟ \(\cirbot\) \cirbot up tack with circle aboveU+027F0 ⟰ \(\UUparrow\) \UUparrow upwards quadruple arrowU+027F1 ⟱ \(\DDownarrow\) \DDownarrow downwards quadruple arrowU+027F2 ⟲ \(\acwgapcirclearrow\) \acwgapcirclearrow anticlockwise gapped circle arrowU+027F3 ⟳ \(\cwgapcirclearrow\) \cwgapcirclearrow clockwise gapped circle arrowU+027F4 ⟴ \(\rightarrowonoplus\) \rightarrowonoplus right arrow with circled plusU+027F5 ⟵ \(\longleftarrow\) \longleftarrow long leftwards arrowU+027F6 ⟶ \(\longrightarrow\) \longrightarrow long rightwards arrowU+027F7 ⟷ \(\longleftrightarrow\) \longleftrightarrow long left right arrowU+027F8 ⟸ \(\Longleftarrow\) \Longleftarrow long leftwards double arrowU+027F9 ⟹ \(\Longrightarrow\) \Longrightarrow long rightwards double arrowU+027FA ⟺ \(\Longleftrightarrow\) \Longleftrightarrow long left right double arrowU+027FB ⟻ \(\longmapsfrom\) \longmapsfrom long leftwards arrow from barU+027FC ⟼ \(\longmapsto\) \longmapsto long rightwards arrow from barU+027FD ⟽ \(\Longmapsfrom\) \Longmapsfrom long leftwards double arrow from barU+027FE ⟾ \(\Longmapsto\) \Longmapsto long rightwards double arrow from barU+027FF ⟿ \(\longrightsquigarrow\) \longrightsquigarrow long rightwards squiggle arrowU+02900 ⤀ \(\nvtwoheadrightarrow\) \nvtwoheadrightarrow rightwards two-headed arrow with vertical strokeU+02901 ⤁ \(\nVtwoheadrightarrow\) \nVtwoheadrightarrow rightwards two-headed arrow with double vertical strokeU+02902 ⤂ \(\nvLeftarrow\) \nvLeftarrow leftwards double arrow with verticalstrokeU+02903 ⤃ \(\nvRightarrow\) \nvRightarrow rightwards double arrow with vertical strokeU+02904 ⤄ \(\nvLeftrightarrow\) \nvLeftrightarrow left right double arrow with vertical strokeU+02905 ⤅ \(\twoheadmapsto\) \twoheadmapsto rightwards two-headed arrow from barU+02906 ⤆ \(\Mapsfrom\) \Mapsfrom leftwards double arrow from barU+02907 ⤇ \(\Mapsto\) \Mapsto rightwards double arrow from barU+02908 ⤈ \(\downarrowbarred\) \downarrowbarred downwards arrow with horizontalstrokeU+02909 ⤉ \(\uparrowbarred\) \uparrowbarred upwards arrow with horizontal strokeU+0290A ⤊ \(\Uuparrow\) \Uuparrow upwards triple arrowU+0290B ⤋ \(\Ddownarrow\) \Ddownarrow downwards triple arrowU+0290C ⤌ \(\leftbkarrow\) \leftbkarrow leftwards double dash arrowU+0290D ⤍ \(\rightbkarrow\) \rightbkarrow rightwards double dash arrowU+0290E ⤎ \(\leftdbkarrow\) \leftdbkarrow leftwards triple dash arrowU+0290F ⤏ \(\dbkarrow\) \dbkarrow rightwards triple dash arrowU+02910 ⤐ \(\drbkarrow\) \drbkarrow rightwards two-headed triple dasharrowU+02911 ⤑ \(\rightdotarrow\) \rightdotarrow rightwards arrow with dotted stemU+02912 ⤒ \(\baruparrow\) \baruparrow upwards arrow to barU+02913 ⤓ \(\downarrowbar\) \downarrowbar downwards arrow to barU+02914 ⤔ \(\nvrightarrowtail\) \nvrightarrowtail rightwards arrow with tail with vertical strokeU+02915 ⤕ \(\nVrightarrowtail\) \nVrightarrowtail rightwards arrow with tail with double vertical strokeU+02916 ⤖ \(\twoheadrightarrowtail\) \twoheadrightarrowtail rightwards two-headed arrow with tailU+02917 ⤗ \(\nvtwoheadrightarrowtail\) \nvtwoheadrightarrowtail rightwards two-headed arrow with tail with vertical strokeU+02918 ⤘ \(\nVtwoheadrightarrowtail\) \nVtwoheadrightarrowtail rightwards two-headed arrow with tail with double vertical strokeU+02919 ⤙ \(\lefttail\) \lefttail leftwards arrow-tailU+0291A ⤚ \(\righttail\) \righttail rightwards arrow-tailU+0291B ⤛ \(\leftdbltail\) \leftdbltail leftwards double arrow-tailU+0291C ⤜ \(\rightdbltail\) \rightdbltail rightwards double arrow-tailU+0291D ⤝ \(\diamondleftarrow\) \diamondleftarrow leftwards arrow to black diamondU+0291E ⤞ \(\rightarrowdiamond\) \rightarrowdiamond rightwards arrow to black diamondU+0291F ⤟ \(\diamondleftarrowbar\) \diamondleftarrowbar leftwards arrow from bar to blackdiamondU+02920 ⤠ \(\barrightarrowdiamond\) \barrightarrowdiamond rightwards arrow from bar to black diamondU+02921 ⤡ \(\nwsearrow\) \nwsearrow north west and south east arrowU+02922 ⤢ \(\neswarrow\) \neswarrow north east and south west arrowU+02923 ⤣ \(\hknwarrow\) \hknwarrow north west arrow with hookU+02924 ⤤ \(\hknearrow\) \hknearrow north east arrow with hookU+02925 ⤥ \(\hksearrow\) \hksearrow south east arrow with hookU+02926 ⤦ \(\hkswarrow\) \hkswarrow south west arrow with hookU+02927 ⤧ \(\tona\) \tona north west arrow and north eastarrowU+02928 ⤨ \(\toea\) \toea north east arrow and south eastarrowU+02929 ⤩ \(\tosa\) \tosa south east arrow and south westarrowU+0292A ⤪ \(\towa\) \towa south west arrow and north westarrowU+02933 ⤳ \(\rightcurvedarrow\) \rightcurvedarrow wave arrow pointing directly rightU+02936 ⤶ \(\leftdowncurvedarrow\) \leftdowncurvedarrow arrow pointing downwards then curving leftwardsU+02937 ⤷ \(\rightdowncurvedarrow\) \rightdowncurvedarrow arrow pointing downwards then curving rightwardsU+02938 ⤸ \(\cwrightarcarrow\) \cwrightarcarrow right-side arc clockwise arrowU+02939 ⤹ \(\acwleftarcarrow\) \acwleftarcarrow left-side arc anticlockwise arrowU+0293A ⤺ \(\acwoverarcarrow\) \acwoverarcarrow top arc anticlockwise arrowU+0293B ⤻ \(\acwunderarcarrow\) \acwunderarcarrow bottom arc anticlockwise arrowU+0293C ⤼ \(\curvearrowrightminus\) \curvearrowrightminus top arc clockwise arrow with minusU+0293D ⤽ \(\curvearrowleftplus\) \curvearrowleftplus top arc anticlockwise arrow with plusU+0293E ⤾ \(\cwundercurvearrow\) \cwundercurvearrow lower right semicircular clockwisearrowU+0293F ⤿ \(\ccwundercurvearrow\) \ccwundercurvearrow lower left semicircular anticlockwisearrowU+02940 ⥀ \(\acwcirclearrow\) \acwcirclearrow anticlockwise closed circle arrowU+02941 ⥁ \(\cwcirclearrow\) \cwcirclearrow clockwise closed circle arrowU+02942 ⥂ \(\rightarrowshortleftarrow\) \rightarrowshortleftarrow rightwards arrow above short leftwards arrowU+02943 ⥃ \(\leftarrowshortrightarrow\) \leftarrowshortrightarrow leftwards arrow above short rightwards arrowU+02944 ⥄ \(\shortrightarrowleftarrow\) \shortrightarrowleftarrow short rightwards arrow above leftwards arrowU+02945 ⥅ \(\rightarrowplus\) \rightarrowplus rightwards arrow with plus belowU+02946 ⥆ \(\leftarrowplus\) \leftarrowplus leftwards arrow with plus belowU+02947 ⥇ \(\rightarrowx\) \rightarrowx rightwards arrow through xU+02948 ⥈ \(\leftrightarrowcircle\) \leftrightarrowcircle left right arrow through small circleU+02949 ⥉ \(\twoheaduparrowcircle\) \twoheaduparrowcircle upwards two-headed arrow from small circleU+0294A ⥊ \(\leftrightharpoonupdown\) \leftrightharpoonupdown left barb up right barb down harpoonU+0294B ⥋ \(\leftrightharpoondownup\) \leftrightharpoondownup left barb down right barb up harpoonU+0294C ⥌ \(\updownharpoonrightleft\) \updownharpoonrightleft up barb right down barb left harpoonU+0294D ⥍ \(\updownharpoonleftright\) \updownharpoonleftright up barb left down barb right harpoonU+0294E ⥎ \(\leftrightharpoonupup\) \leftrightharpoonupup left barb up right barb up harpoonU+0294F ⥏ \(\updownharpoonrightright\) \updownharpoonrightright up barb right down barb right harpoonU+02950 ⥐ \(\leftrightharpoondowndown\) \leftrightharpoondowndown left barb down right barb down harpoonU+02951 ⥑ \(\updownharpoonleftleft\) \updownharpoonleftleft up barb left down barb left harpoonU+02952 ⥒ \(\barleftharpoonup\) \barleftharpoonup leftwards harpoon with barb up to barU+02953 ⥓ \(\rightharpoonupbar\) \rightharpoonupbar rightwards harpoon with barb up to barU+02954 ⥔ \(\barupharpoonright\) \barupharpoonright upwards harpoon with barb right to barU+02955 ⥕ \(\downharpoonrightbar\) \downharpoonrightbar downwards harpoon with barb right to barU+02956 ⥖ \(\barleftharpoondown\) \barleftharpoondown leftwards harpoon with barb down to barU+02957 ⥗ \(\rightharpoondownbar\) \rightharpoondownbar rightwards harpoon with barb down to barU+02958 ⥘ \(\barupharpoonleft\) \barupharpoonleft upwards harpoon with barb left to barU+02959 ⥙ \(\downharpoonleftbar\) \downharpoonleftbar downwards harpoon with barb left to barU+0295A ⥚ \(\leftharpoonupbar\) \leftharpoonupbar leftwards harpoon with barb up from barU+0295B ⥛ \(\barrightharpoonup\) \barrightharpoonup rightwards harpoon with barb up from barU+0295C ⥜ \(\upharpoonrightbar\) \upharpoonrightbar upwards harpoon with barb right from barU+0295D ⥝ \(\bardownharpoonright\) \bardownharpoonright downwards harpoon with barb right from barU+0295E ⥞ \(\leftharpoondownbar\) \leftharpoondownbar leftwards harpoon with barb down from barU+0295F ⥟ \(\barrightharpoondown\) \barrightharpoondown rightwards harpoon with barb down from barU+02960 ⥠ \(\upharpoonleftbar\) \upharpoonleftbar upwards harpoon with barb left from barU+02961 ⥡ \(\bardownharpoonleft\) \bardownharpoonleft downwards harpoon with barb left from barU+02962 ⥢ \(\leftharpoonsupdown\) \leftharpoonsupdown leftwards harpoon with barb up above leftwards harpoon with barb downU+02963 ⥣ \(\upharpoonsleftright\) \upharpoonsleftright upwards harpoon with barb left beside upwards harpoon with barb rightU+02964 ⥤ \(\rightharpoonsupdown\) \rightharpoonsupdown rightwards harpoon with barb up above rightwards harpoon with barb downU+02965 ⥥ \(\downharpoonsleftright\) \downharpoonsleftright downwards harpoon with barb left beside downwards harpoon with barb rightU+02966 ⥦ \(\leftrightharpoonsup\) \leftrightharpoonsup leftwards harpoon with barb up above rightwards harpoon with barbupU+02967 ⥧ \(\leftrightharpoonsdown\) \leftrightharpoonsdown leftwards harpoon with barb down above rightwards harpoon with barb downU+02968 ⥨ \(\rightleftharpoonsup\) \rightleftharpoonsup rightwards harpoon with barb up above leftwards harpoon with barbupU+02969 ⥩ \(\rightleftharpoonsdown\) \rightleftharpoonsdown rightwards harpoon with barb down above leftwards harpoon with barb downU+0296A ⥪ \(\leftharpoonupdash\) \leftharpoonupdash leftwards harpoon with barb up above long dashU+0296B ⥫ \(\dashleftharpoondown\) \dashleftharpoondown leftwards harpoon with barb down below long dashU+0296C ⥬ \(\rightharpoonupdash\) \rightharpoonupdash rightwards harpoon with barb up above long dashU+0296D ⥭ \(\dashrightharpoondown\) \dashrightharpoondown rightwards harpoon with barb down below long dashU+0296E ⥮ \(\updownharpoonsleftright\) \updownharpoonsleftright upwards harpoon with barb left beside downwards harpoon with barb rightU+0296F ⥯ \(\downupharpoonsleftright\) \downupharpoonsleftright downwards harpoon with barb left beside upwards harpoon with barb rightU+02970 ⥰ \(\rightimply\) \rightimply right double arrow with rounded headU+02971 ⥱ \(\equalrightarrow\) \equalrightarrow equals sign above rightwards arrowU+02972 ⥲ \(\similarrightarrow\) \similarrightarrow tilde operator above rightwardsarrowU+02973 ⥳ \(\leftarrowsimilar\) \leftarrowsimilar leftwards arrow above tilde operatorU+02974 ⥴ \(\rightarrowsimilar\) \rightarrowsimilar rightwards arrow above tilde operatorU+02975 ⥵ \(\rightarrowapprox\) \rightarrowapprox rightwards arrow above almost equal toU+02976 ⥶ \(\ltlarr\) \ltlarr less-than above leftwards arrowU+02977 ⥷ \(\leftarrowless\) \leftarrowless leftwards arrow through less-thanU+02978 ⥸ \(\gtrarr\) \gtrarr greater-than above rightwards ar-rowU+02979 ⥹ \(\subrarr\) \subrarr subset above rightwards arrowU+0297A ⥺ \(\leftarrowsubset\) \leftarrowsubset leftwards arrow through subsetU+0297B ⥻ \(\suplarr\) \suplarr superset above leftwards arrowU+0297C ⥼ \(\leftfishtail\) \leftfishtail left fish tailU+0297D ⥽ \(\rightfishtail\) \rightfishtail right fish tailU+0297E ⥾ \(\upfishtail\) \upfishtail up fish tailU+0297F ⥿ \(\downfishtail\) \downfishtail down fish tailU+02982 ⦂ \(\typecolon\) \typecolon z notation type colonU+029CE ⧎ \(\rtriltri\) \rtriltri right triangle above left triangleU+029CF ⧏ \(\ltrivb\) \ltrivb left triangle beside vertical barU+029D0 ⧐ \(\vbrtri\) \vbrtri vertical bar beside right triangleU+029D1 ⧑ \(\lfbowtie\) \lfbowtie left black bowtieU+029D2 ⧒ \(\rfbowtie\) \rfbowtie right black bowtieU+029D3 ⧓ \(\fbowtie\) \fbowtie black bowtieU+029D4 ⧔ \(\lftimes\) \lftimes left black timesU+029D5 ⧕ \(\rftimes\) \rftimes right black timesU+029DF ⧟ \(\dualmap\) \dualmap double-ended multimapU+029E1 ⧡ \(\lrtriangleeq\) \lrtriangleeq increases asU+029E3 ⧣ \(\eparsl\) \eparsl equals sign and slanted parallelU+029E4 ⧤ \(\smeparsl\) \smeparsl equals sign and slanted parallel with tilde aboveU+029E5 ⧥ \(\eqvparsl\) \eqvparsl identical to and slanted parallelU+029E6 ⧦ \(\gleichstark\) \gleichstark gleich starkU+029F4 ⧴ \(\ruledelayed\) \ruledelayed rule-delayedU+02A59 ⩙ \(\veeonwedge\) \veeonwedge logical or overlapping logical andU+02A66 ⩦ \(\eqdot\) \eqdot equals sign with dot belowU+02A67 ⩧ \(\dotequiv\) \dotequiv identical with dot aboveU+02A68 ⩨ \(\equivVert\) \equivVert triple horizontal bar with double vertical strokeU+02A69 ⩩ \(\equivVvert\) \equivVvert triple horizontal bar with triple vertical strokeU+02A6A ⩪ \(\dotsim\) \dotsim tilde operator with dot aboveU+02A6B ⩫ \(\simrdots\) \simrdots tilde operator with rising dotsU+02A6C ⩬ \(\simminussim\) \simminussim similar minus similarU+02A6D ⩭ \(\congdot\) \congdot congruent with dot aboveU+02A6E ⩮ \(\asteq\) \asteq equals with asteriskU+02A6F ⩯ \(\hatapprox\) \hatapprox almost equal to with circumflex accentU+02A70 ⩰ \(\approxeqq\) \approxeqq approximately equal or equal toU+02A73 ⩳ \(\eqqsim\) \eqqsim equals sign above tilde operatorU+02A74 ⩴ \(\Coloneq\) \Coloneq double colon equalU+02A75 ⩵ \(\eqeq\) \eqeq two consecutive equals signsU+02A76 ⩶ \(\eqeqeq\) \eqeqeq three consecutive equals signsU+02A77 ⩷ \(\ddotseq\) \ddotseq equals sign with two dots above and two dots belowU+02A78 ⩸ \(\equivDD\) \equivDD equivalent with four dots aboveU+02A79 ⩹ \(\ltcir\) \ltcir less-than with circle insideU+02A7A ⩺ \(\gtcir\) \gtcir greater-than with circle insideU+02A7B ⩻ \(\ltquest\) \ltquest less-than with question mark aboveU+02A7C ⩼ \(\gtquest\) \gtquest greater-than with question mark aboveU+02A7D ⩽ \(\leqslant\) \leqslant less-than or slanted equal toU+02A7E ⩾ \(\geqslant\) \geqslant greater-than or slanted equal toU+02A7F ⩿ \(\lesdot\) \lesdot less-than or slanted equal to with dot insideU+02A80 ⪀ \(\gesdot\) \gesdot greater-than or slanted equal to with dot insideU+02A81 ⪁ \(\lesdoto\) \lesdoto less-than or slanted equal to with dot aboveU+02A82 ⪂ \(\gesdoto\) \gesdoto greater-than or slanted equal to with dot aboveU+02A83 ⪃ \(\lesdotor\) \lesdotor less-than or slanted equal to with dot above rightU+02A84 ⪄ \(\gesdotol\) \gesdotol greater-than or slanted equal to with dot above leftU+02A85 ⪅ \(\lessapprox\) \lessapprox less-than or approximateU+02A86 ⪆ \(\gtrapprox\) \gtrapprox greater-than or approximateU+02A87 ⪇ \(\lneq\) \lneq less-than and single-line not equal toU+02A88 ⪈ \(\gneq\) \gneq greater-than and single-line not equal toU+02A89 ⪉ \(\lnapprox\) \lnapprox less-than and not approximateU+02A8A ⪊ \(\gnapprox\) \gnapprox greater-than and not approximateU+02A8B ⪋ \(\lesseqqgtr\) \lesseqqgtr less-than above double-line equal above greater-thanU+02A8C ⪌ \(\gtreqqless\) \gtreqqless greater-than above double-line equal above less-thanU+02A8D ⪍ \(\lsime\) \lsime less-than above similar or equalU+02A8E ⪎ \(\gsime\) \gsime greater-than above similar or equalU+02A8F ⪏ \(\lsimg\) \lsimg less-than above similar abovegreater-thanU+02A90 ⪐ \(\gsiml\) \gsiml greater-than above similar above less-thanU+02A91 ⪑ \(\lgE\) \lgE less-than above greater-than above double-line equalU+02A92 ⪒ \(\glE\) \glE greater-than above less-than above double-line equalU+02A93 ⪓ \(\lesges\) \lesges less-than above slanted equal above greater-than above slanted equalU+02A94 ⪔ \(\gesles\) \gesles greater-than above slanted equal above less-than above slanted equalU+02A95 ⪕ \(\eqslantless\) \eqslantless slanted equal to or less-thanU+02A96 ⪖ \(\eqslantgtr\) \eqslantgtr slanted equal to or greater-thanU+02A97 ⪗ \(\elsdot\) \elsdot slanted equal to or less-than with dot insideU+02A98 ⪘ \(\egsdot\) \egsdot slanted equal to or greater-than with dot insideU+02A99 ⪙ \(\eqqless\) \eqqless double-line equal to or less-thanU+02A9A ⪚ \(\eqqgtr\) \eqqgtr double-line equal to or greater-thanU+02A9B ⪛ \(\eqqslantless\) \eqqslantless double-line slanted equal to or less-thanU+02A9C ⪜ \(\eqqslantgtr\) \eqqslantgtr double-line slanted equal to or greater-thanU+02A9D ⪝ \(\simless\) \simless similar or less-thanU+02A9E ⪞ \(\simgtr\) \simgtr similar or greater-thanU+02A9F ⪟ \(\simlE\) \simlE similar above less-than above equals signU+02AA0 ⪠ \(\simgE\) \simgE similar above greater-than above equals signU+02AA1 ⪡ \(\Lt\) \Lt double nested less-thanU+02AA2 ⪢ \(\Gt\) \Gt double nested greater-thanU+02AA3 ⪣ \(\partialmeetcontraction\) \partialmeetcontraction double less-than with underbarU+02AA4 ⪤ \(\glj\) \glj greater-than overlapping less-thanU+02AA5 ⪥ \(\gla\) \gla greater-than beside less-thanU+02AA6 ⪦ \(\ltcc\) \ltcc less-than closed by curveU+02AA7 ⪧ \(\gtcc\) \gtcc greater-than closed by curveU+02AA8 ⪨ \(\lescc\) \lescc less-than closed by curve above slanted equalU+02AA9 ⪩ \(\gescc\) \gescc greater-than closed by curve above slanted equalU+02AAA ⪪ \(\smt\) \smt smaller thanU+02AAB ⪫ \(\lat\) \lat larger thanU+02AAC ⪬ \(\smte\) \smte smaller than or equal toU+02AAD ⪭ \(\late\) \late larger than or equal toU+02AAE ⪮ \(\bumpeqq\) \bumpeqq equals sign with bumpy aboveU+02AAF ⪯ \(\preceq\) \preceq precedes above single-line equals signU+02AB0 ⪰ \(\succeq\) \succeq succeeds above single-line equals signU+02AB1 ⪱ \(\precneq\) \precneq precedes above single-line not equal toU+02AB2 ⪲ \(\succneq\) \succneq succeeds above single-line not equal toU+02AB3 ⪳ \(\preceqq\) \preceqq precedes above equals signU+02AB4 ⪴ \(\succeqq\) \succeqq succeeds above equals signU+02AB5 ⪵ \(\precneqq\) \precneqq precedes above not equal toU+02AB6 ⪶ \(\succneqq\) \succneqq succeeds above not equal toU+02AB7 ⪷ \(\precapprox\) \precapprox precedes above almost equal toU+02AB8 ⪸ \(\succapprox\) \succapprox succeeds above almost equal toU+02AB9 ⪹ \(\precnapprox\) \precnapprox precedes above not almost equal toU+02ABA ⪺ \(\succnapprox\) \succnapprox succeeds above not almost equal toU+02ABB ⪻ \(\Prec\) \Prec double precedesU+02ABC ⪼ \(\Succ\) \Succ double succeedsU+02ABD ⪽ \(\subsetdot\) \subsetdot subset with dotU+02ABE ⪾ \(\supsetdot\) \supsetdot superset with dotU+02ABF ⪿ \(\subsetplus\) \subsetplus subset with plus sign belowU+02AC0 ⫀ \(\supsetplus\) \supsetplus superset with plus sign belowU+02AC1 ⫁ \(\submult\) \submult subset with multiplication sign belowU+02AC2 ⫂ \(\supmult\) \supmult superset with multiplication sign belowU+02AC3 ⫃ \(\subedot\) \subedot subset of or equal to with dot aboveU+02AC4 ⫄ \(\supedot\) \supedot superset of or equal to with dot aboveU+02AC5 ⫅ \(\subseteqq\) \subseteqq subset of above equals signU+02AC6 ⫆ \(\supseteqq\) \supseteqq superset of above equals signU+02AC7 ⫇ \(\subsim\) \subsim subset of above tilde operatorU+02AC8 ⫈ \(\supsim\) \supsim superset of above tilde operatorU+02AC9 ⫉ \(\subsetapprox\) \subsetapprox subset of above almost equal toU+02ACA ⫊ \(\supsetapprox\) \supsetapprox superset of above almost equal toU+02ACB ⫋ \(\subsetneqq\) \subsetneqq subset of above not equal toU+02ACC ⫌ \(\supsetneqq\) \supsetneqq superset of above not equal toU+02ACD ⫍ \(\lsqhook\) \lsqhook square left open box operatorU+02ACE ⫎ \(\rsqhook\) \rsqhook square right open box operatorU+02ACF ⫏ \(\csub\) \csub closed subsetU+02AD0 ⫐ \(\csup\) \csup closed supersetU+02AD1 ⫑ \(\csube\) \csube closed subset or equal toU+02AD2 ⫒ \(\csupe\) \csupe closed superset or equal toU+02AD3 ⫓ \(\subsup\) \subsup subset above supersetU+02AD4 ⫔ \(\supsub\) \supsub superset above subsetU+02AD5 ⫕ \(\subsub\) \subsub subset above subsetU+02AD6 ⫖ \(\supsup\) \supsup superset above supersetU+02AD7 ⫗ \(\suphsub\) \suphsub superset beside subsetU+02AD8 ⫘ \(\supdsub\) \supdsub superset beside and joined by dash with subsetU+02AD9 ⫙ \(\forkv\) \forkv element of opening downwardsU+02ADA ⫚ \(\topfork\) \topfork pitchfork with tee topU+02ADB ⫛ \(\mlcp\) \mlcp transversal intersectionU+02ADC ⫝̸ \(\forks\) \forks forkingU+02ADD ⫝ \(\forksnot\) \forksnot nonforkingU+02ADE ⫞ \(\shortlefttack\) \shortlefttack short left tackU+02ADF ⫟ \(\shortdowntack\) \shortdowntack short down tackU+02AE0 ⫠ \(\shortuptack\) \shortuptack short up tackU+02AE2 ⫢ \(\vDdash\) \vDdash vertical bar triple right turnstileU+02AE3 ⫣ \(\dashV\) \dashV double vertical bar left turnstileU+02AE4 ⫤ \(\Dashv\) \Dashv vertical bar double left turnstileU+02AE5 ⫥ \(\DashV\) \DashV double vertical bar double left turnstileU+02AE6 ⫦ \(\varVdash\) \varVdash long dash from left member of double verticalU+02AE7 ⫧ \(\Barv\) \Barv short down tack with overbarU+02AE8 ⫨ \(\vBar\) \vBar short up tack with underbarU+02AE9 ⫩ \(\vBarv\) \vBarv short up tack above short down tackU+02AEA ⫪ \(\barV\) \barV double down tackU+02AEB ⫫ \(\Vbar\) \Vbar double up tackU+02AEC ⫬ \(\Not\) \Not double stroke not signU+02AED ⫭ \(\bNot\) \bNot reversed double stroke not signU+02AEE ⫮ \(\revnmid\) \revnmid does not divide with reversed negation slashU+02AEF ⫯ \(\cirmid\) \cirmid vertical line with circle aboveU+02AF0 ⫰ \(\midcir\) \midcir vertical line with circle belowU+02AF2 ⫲ \(\nhpar\) \nhpar parallel with horizontal strokeU+02AF3 ⫳ \(\parsim\) \parsim parallel with tilde operatorU+02AF7 ⫷ \(\lllnest\) \lllnest stacked very much less-thanU+02AF8 ⫸ \(\gggnest\) \gggnest stacked very much greater-thanU+02AF9 ⫹ \(\leqqslant\) \leqqslant double-line slanted less-than orequal toU+02AFA ⫺ \(\geqqslant\) \geqqslant double-line slanted greater-than or equal toU+02B30 ⬰ \(\circleonleftarrow\) \circleonleftarrow left arrow with small circleU+02B31 ⬱ \(\leftthreearrows\) \leftthreearrows three leftwards arrowsU+02B32 ⬲ \(\leftarrowonoplus\) \leftarrowonoplus left arrow with circled plusU+02B33 ⬳ \(\longleftsquigarrow\) \longleftsquigarrow long leftwards squiggle arrowU+02B34 ⬴ \(\nvtwoheadleftarrow\) \nvtwoheadleftarrow leftwards two-headed arrow withvertical strokeU+02B35 ⬵ \(\nVtwoheadleftarrow\) \nVtwoheadleftarrow leftwards two-headed arrow withdouble vertical strokeU+02B36 ⬶ \(\twoheadmapsfrom\) \twoheadmapsfrom leftwards two-headed arrow frombarU+02B37 ⬷ \(\twoheadleftdbkarrow\) \twoheadleftdbkarrow leftwards two-headed triple-dasharrowU+02B38 ⬸ \(\leftdotarrow\) \leftdotarrow leftwards arrow with dotted stemU+02B39 ⬹ \(\nvleftarrowtail\) \nvleftarrowtail leftwards arrow with tail with verti-cal strokeU+02B3A ⬺ \(\nVleftarrowtail\) \nVleftarrowtail leftwards arrow with tail with dou-ble vertical strokeU+02B3B ⬻ \(\twoheadleftarrowtail\) \twoheadleftarrowtail leftwards two-headed arrow withtailU+02B3C ⬼ \(\nvtwoheadleftarrowtail\) \nvtwoheadleftarrowtail leftwards two-headed arrow withtail with vertical strokeU+02B3D ⬽ \(\nVtwoheadleftarrowtail\) \nVtwoheadleftarrowtail leftwards two-headed arrow withtail with double vertical strokeU+02B3E ⬾ \(\leftarrowx\) \leftarrowx leftwards arrow through xU+02B3F ⬿ \(\leftcurvedarrow\) \leftcurvedarrow wave arrow pointing directly leftU+02B40 ⭀ \(\equalleftarrow\) \equalleftarrow equals sign above leftwards arrowU+02B41 ⭁ \(\bsimilarleftarrow\) \bsimilarleftarrow reverse tilde operator above leftwards arrowU+02B42 ⭂ \(\leftarrowbackapprox\) \leftarrowbackapprox leftwards arrow above reverse almost equal toU+02B43 ⭃ \(\rightarrowgtr\) \rightarrowgtr rightwards arrow through greater-thanU+02B44 ⭄ \(\rightarrowsupset\) \rightarrowsupset rightwards arrow through subsetU+02B45 ⭅ \(\LLeftarrow\) \LLeftarrow leftwards quadruple arrowU+02B46 ⭆ \(\RRightarrow\) \RRightarrow rightwards quadruple arrowU+02B47 ⭇ \(\bsimilarrightarrow\) \bsimilarrightarrow reverse tilde operator above rightwards arrowU+02B48 ⭈ \(\rightarrowbackapprox\) \rightarrowbackapprox rightwards arrow above reverse almost equal toU+02B49 ⭉ \(\similarleftarrow\) \similarleftarrow tilde operator above leftwards arrowU+02B4A ⭊ \(\leftarrowapprox\) \leftarrowapprox leftwards arrow above almost equal toU+02B4B ⭋ \(\leftarrowbsimilar\) \leftarrowbsimilar leftwards arrow above reverse tildeoperatorU+02B4C ⭌ \(\rightarrowbsimilar\) \rightarrowbsimilar righttwards arrow above reverse tilde operatorU+000F0 ð \(ð\) \(\matheth\) \matheth ethU+02010 ‐ \(‐\) \(\mathhyphen\) \mathhyphen hyphenU+02102 ℂ \(ℂ\) \(\BbbC\) \BbbC /bbb c, open face cU+0210A ℊ \(ℊ\) \(\mscrg\) \mscrg /scr g, script letter gU+0210B ℋ \(ℋ\) \(\mscrH\) \mscrH hamiltonian (script capital h)U+0210C ℌ \(ℌ\) \(\mfrakH\) \mfrakH /frak h, upper case hU+0210D ℍ \(ℍ\) \(\BbbH\) \BbbH /bbb h, open face hU+0210F ℏ \(ℏ\) \(\hslash\) \hslash /hslash - variant planck’s over 2piU+02110 ℐ \(ℐ\) \(\mscrI\) \mscrI /scr i, script letter iU+02111 ℑ \(ℑ\) \(\Im\) \Im imaginary partU+02112 ℒ \(ℒ\) \(\mscrL\) \mscrL lagrangian (script capital l)U+02113 ℓ \(ℓ\) \(\ell\) \ell cursive small lU+02115 ℕ \(ℕ\) \(\BbbN\) \BbbN /bbb n, open face nU+02118 ℘ \(℘\) \(\wp\) \wp weierstrass pU+02119 ℙ \(ℙ\) \(\BbbP\) \BbbP /bbb p, open face pU+0211A ℚ \(ℚ\) \(\BbbQ\) \BbbQ /bbb q, open face qU+0211B ℛ \(ℛ\) \(\mscrR\) \mscrR /scr r, script letter rU+0211C ℜ \(ℜ\) \(\Re\) \Re real partU+0211D ℝ \(ℝ\) \(\BbbR\) \BbbR /bbb r, open face rU+02124 ℤ \(ℤ\) \(\BbbZ\) \BbbZ /bbb z, open face zU+02128 ℨ \(ℨ\) \(\mfrakZ\) \mfrakZ /frak z, upper case zU+02129 ℩ \(℩\) \(\turnediota\) \turnediota turned iotaU+0212B Å \(Å\) \(\Angstrom\) \Angstrom angstrom capital a, ringU+0212C ℬ \(ℬ\) \(\mscrB\) \mscrB bernoulli function (script capital b)U+0212D ℭ \(ℭ\) \(\mfrakC\) \mfrakC black-letter capital cU+0212F ℯ \(ℯ\) \(\mscre\) \mscre /scr e, script letter eU+02130 ℰ \(ℰ\) \(\mscrE\) \mscrE /scr e, script letter eU+02131 ℱ \(ℱ\) \(\mscrF\) \mscrF /scr f, script letter fU+02133 ℳ \(ℳ\) \(\mscrM\) \mscrM physics m-matrix (script capital m)U+02134 ℴ \(ℴ\) \(\mscro\) \mscro order of (script small o)U+02135 א \(א\) \(\aleph\) \aleph aleph, hebrewU+02136 ב \(ב\) \(\beth\) \beth beth, hebrewU+02137 ג \(ג\) \(\gimel\) \gimel gimel, hebrewU+02138 ד \(ד\) \(\daleth\) \daleth daleth, hebrewU+0213D ℽ \(ℽ\) \(\Bbbgamma\) \Bbbgamma double-struck small gammaU+0213E ℾ \(ℾ\) \(\BbbGamma\) \BbbGamma double-struck capital gammaU+0213F ℿ \(ℿ\) \(\BbbPi\) \BbbPi double-struck capital piU+02202 ∂ \(∂\) \(\partial\) \partial partial differentialU+02207 ∇ \(∇\) \(\nabla\) \nabla nabla, del, hamilton operatorU+00391 Α \(Α\) \(\mupAlpha\) \mupAlpha capital alpha, greekU+00392 Β \(Β\) \(\mupBeta\) \mupBeta capital beta, greekU+00393 Γ \(Γ\) \(\mupGamma\) \mupGamma capital gamma, greekU+00394 Δ \(Δ\) \(\mupDelta\) \mupDelta capital delta, greekU+00395 Ε \(Ε\) \(\mupEpsilon\) \mupEpsilon capital epsilon, greekU+00396 Ζ \(Ζ\) \(\mupZeta\) \mupZeta capital zeta, greekU+00397 Η \(Η\) \(\mupEta\) \mupEta capital eta, greekU+00398 Θ \(Θ\) \(\mupTheta\) \mupTheta capital theta, greekU+00399 Ι \(Ι\) \(\mupIota\) \mupIota capital iota, greekU+0039A Κ \(Κ\) \(\mupKappa\) \mupKappa capital kappa, greekU+0039B Λ \(Λ\) \(\mupLambda\) \mupLambda capital lambda, greekU+0039C Μ \(Μ\) \(\mupMu\) \mupMu capital mu, greekU+0039D Ν \(Ν\) \(\mupNu\) \mupNu capital nu, greekU+0039E Ξ \(Ξ\) \(\mupXi\) \mupXi capital xi, greekU+0039F Ο \(Ο\) \(\mupOmicron\) \mupOmicron capital omicron, greekU+003A0 Π \(Π\) \(\mupPi\) \mupPi capital pi, greekU+003A1 Ρ \(Ρ\) \(\mupRho\) \mupRho capital rho, greekU+003A3 Σ \(Σ\) \(\mupSigma\) \mupSigma capital sigma, greekU+003A4 Τ \(Τ\) \(\mupTau\) \mupTau capital tau, greekU+003A5 Υ \(Υ\) \(\mupUpsilon\) \mupUpsilon capital upsilon, greekU+003A6 Φ \(Φ\) \(\mupPhi\) \mupPhi capital phi, greekU+003A7 Χ \(Χ\) \(\mupChi\) \mupChi capital chi, greekU+003A8 Ψ \(Ψ\) \(\mupPsi\) \mupPsi capital psi, greekU+003A9 Ω \(Ω\) \(\mupOmega\) \mupOmega capital omega, greekU+003B1 α \(α\) \(\mupalpha\) \mupalpha small alpha, greekU+003B2 β \(β\) \(\mupbeta\) \mupbeta small beta, greekU+003B3 γ \(γ\) \(\mupgamma\) \mupgamma small gamma, greekU+003B4 δ \(δ\) \(\mupdelta\) \mupdelta small delta, greekU+003B5 ε \(ε\) \(\mupvarepsilon\) \mupvarepsilon rounded small varepsilon, greekU+003B6 ζ \(ζ\) \(\mupzeta\) \mupzeta small zeta, greekU+003B7 η \(η\) \(\mupeta\) \mupeta small eta, greekU+003B8 θ \(θ\) \(\muptheta\) \muptheta straight theta, small theta, greekU+003B9 ι \(ι\) \(\mupiota\) \mupiota small iota, greekU+003BA κ \(κ\) \(\mupkappa\) \mupkappa small kappa, greekU+003BB λ \(λ\) \(\muplambda\) \muplambda small lambda, greekU+003BC μ \(μ\) \(\mupmu\) \mupmu small mu, greekU+003BD ν \(ν\) \(\mupnu\) \mupnu small nu, greekU+003BE ξ \(ξ\) \(\mupxi\) \mupxi small xi, greekU+003BF ο \(ο\) \(\mupomicron\) \mupomicron small omicron, greekU+003C0 π \(π\) \(\muppi\) \muppi small pi, greekU+003C1 ρ \(ρ\) \(\muprho\) \muprho small rho, greekU+003C2 ς \(ς\) \(\mupvarsigma\) \mupvarsigma terminal sigma, greekU+003C3 σ \(σ\) \(\mupsigma\) \mupsigma small sigma, greekU+003C4 τ \(τ\) \(\muptau\) \muptau small tau, greekU+003C5 υ \(υ\) \(\mupupsilon\) \mupupsilon small upsilon, greekU+003C6 φ \(φ\) \(\mupvarphi\) \mupvarphi curly or open small phi, greekU+003C7 χ \(χ\) \(\mupchi\) \mupchi small chi, greekU+003C8 ψ \(ψ\) \(\muppsi\) \muppsi small psi, greekU+003C9 ω \(ω\) \(\mupomega\) \mupomega small omega, greekU+003D1 θ \(θ\) \(\mupvartheta\) \mupvartheta /vartheta - curly or open thetaU+003D5 φ \(φ\) \(\mupphi\) \mupphi /straightphi - small phi, greekU+003D6 π \(π\) \(\mupvarpi\) \mupvarpi rounded small pi (pomega), greekU+003DC Ϝ \(Ϝ\) \(\upDigamma\) \upDigamma capital digammaU+003DD ϝ \(ϝ\) \(\updigamma\) \updigamma old greek small letter digammaU+003F0 κ \(κ\) \(\mupvarkappa\) \mupvarkappa rounded small kappa, greekU+003F1 ρ \(ρ\) \(\mupvarrho\) \mupvarrho rounded small rho, greekU+003F4 Θ \(Θ\) \(\mupvarTheta\) \mupvarTheta greek capital theta symbolU+003F5 ε \(ε\) \(\mupepsilon\) \mupepsilon greek lunate varepsilon symbolU+1D434 𝐴 \(𝐴\) \(\mitA\) \mitA mathematical italic capital aU+1D435 𝐵 \(𝐵\) \(\mitB\) \mitB mathematical italic capital bU+1D436 𝐶 \(𝐶\) \(\mitC\) \mitC mathematical italic capital cU+1D437 𝐷 \(𝐷\) \(\mitD\) \mitD mathematical italic capital dU+1D438 𝐸 \(𝐸\) \(\mitE\) \mitE mathematical italic capital eU+1D439 𝐹 \(𝐹\) \(\mitF\) \mitF mathematical italic capital fU+1D43A 𝐺 \(𝐺\) \(\mitG\) \mitG mathematical italic capital gU+1D43B 𝐻 \(𝐻\) \(\mitH\) \mitH mathematical italic capital hU+1D43C 𝐼 \(𝐼\) \(\mitI\) \mitI mathematical italic capital iU+1D43D 𝐽 \(𝐽\) \(\mitJ\) \mitJ mathematical italic capital jU+1D43E 𝐾 \(𝐾\) \(\mitK\) \mitK mathematical italic capital kU+1D43F 𝐿 \(𝐿\) \(\mitL\) \mitL mathematical italic capital lU+1D440 𝑀 \(𝑀\) \(\mitM\) \mitM mathematical italic capital mU+1D441 𝑁 \(𝑁\) \(\mitN\) \mitN mathematical italic capital nU+1D442 𝑂 \(𝑂\) \(\mitO\) \mitO mathematical italic capital oU+1D443 𝑃 \(𝑃\) \(\mitP\) \mitP mathematical italic capital pU+1D444 𝑄 \(𝑄\) \(\mitQ\) \mitQ mathematical italic capital qU+1D445 𝑅 \(𝑅\) \(\mitR\) \mitR mathematical italic capital rU+1D446 𝑆 \(𝑆\) \(\mitS\) \mitS mathematical italic capital sU+1D447 𝑇 \(𝑇\) \(\mitT\) \mitT mathematical italic capital tU+1D448 𝑈 \(𝑈\) \(\mitU\) \mitU mathematical italic capital uU+1D449 𝑉 \(𝑉\) \(\mitV\) \mitV mathematical italic capital vU+1D44A 𝑊 \(𝑊\) \(\mitW\) \mitW mathematical italic capital wU+1D44B 𝑋 \(𝑋\) \(\mitX\) \mitX mathematical italic capital xU+1D44C 𝑌 \(𝑌\) \(\mitY\) \mitY mathematical italic capital yU+1D44D 𝑍 \(𝑍\) \(\mitZ\) \mitZ mathematical italic capital zU+1D44E 𝑎 \(𝑎\) \(\mita\) \mita mathematical italic small aU+1D44F 𝑏 \(𝑏\) \(\mitb\) \mitb mathematical italic small bU+1D450 𝑐 \(𝑐\) \(\mitc\) \mitc mathematical italic small cU+1D451 𝑑 \(𝑑\) \(\mitd\) \mitd mathematical italic small dU+1D452 𝑒 \(𝑒\) \(\mite\) \mite mathematical italic small eU+1D453 𝑓 \(𝑓\) \(\mitf\) \mitf mathematical italic small fU+1D454 𝑔 \(𝑔\) \(\mitg\) \mitg mathematical italic small gU+1D456 𝑖 \(𝑖\) \(\miti\) \miti mathematical italic small iU+1D457 𝑗 \(𝑗\) \(\mitj\) \mitj mathematical italic small jU+1D458 𝑘 \(𝑘\) \(\mitk\) \mitk mathematical italic small kU+1D459 𝑙 \(𝑙\) \(\mitl\) \mitl mathematical italic small lU+1D45A 𝑚 \(𝑚\) \(\mitm\) \mitm mathematical italic small mU+1D45B 𝑛 \(𝑛\) \(\mitn\) \mitn mathematical italic small nU+1D45C 𝑜 \(𝑜\) \(\mito\) \mito mathematical italic small oU+1D45D 𝑝 \(𝑝\) \(\mitp\) \mitp mathematical italic small pU+1D45E 𝑞 \(𝑞\) \(\mitq\) \mitq mathematical italic small qU+1D45F 𝑟 \(𝑟\) \(\mitr\) \mitr mathematical italic small rU+1D460 𝑠 \(𝑠\) \(\mits\) \mits mathematical italic small sU+1D461 𝑡 \(𝑡\) \(\mitt\) \mitt mathematical italic small tU+1D462 𝑢 \(𝑢\) \(\mitu\) \mitu mathematical italic small uU+1D463 𝑣 \(𝑣\) \(\mitv\) \mitv mathematical italic small vU+1D464 𝑤 \(𝑤\) \(\mitw\) \mitw mathematical italic small wU+1D465 𝑥 \(𝑥\) \(\mitx\) \mitx mathematical italic small xU+1D466 𝑦 \(𝑦\) \(\mity\) \mity mathematical italic small yU+1D467 𝑧 \(𝑧\) \(\mitz\) \mitz mathematical italic small zU+1D6E2 𝛢 \(𝛢\) \(\mitAlpha\) \mitAlpha mathematical italic capital alphaU+1D6E3 𝛣 \(𝛣\) \(\mitBeta\) \mitBeta mathematical italic capital betaU+1D6E4 𝛤 \(𝛤\) \(\mitGamma\) \mitGamma mathematical italic capital gammaU+1D6E5 𝛥 \(𝛥\) \(\mitDelta\) \mitDelta mathematical italic capital deltaU+1D6E6 𝛦 \(𝛦\) \(\mitEpsilon\) \mitEpsilon mathematical italic capital epsilonU+1D6E7 𝛧 \(𝛧\) \(\mitZeta\) \mitZeta mathematical italic capital zetaU+1D6E8 𝛨 \(𝛨\) \(\mitEta\) \mitEta mathematical italic capital etaU+1D6E9 𝛩 \(𝛩\) \(\mitTheta\) \mitTheta mathematical italic capital thetaU+1D6EA 𝛪 \(𝛪\) \(\mitIota\) \mitIota mathematical italic capital iotaU+1D6EB 𝛫 \(𝛫\) \(\mitKappa\) \mitKappa mathematical italic capital kappaU+1D6EC 𝛬 \(𝛬\) \(\mitLambda\) \mitLambda mathematical italic capital lambdaU+1D6ED 𝛭 \(𝛭\) \(\mitMu\) \mitMu mathematical italic capital muU+1D6EE 𝛮 \(𝛮\) \(\mitNu\) \mitNu mathematical italic capital nuU+1D6EF 𝛯 \(𝛯\) \(\mitXi\) \mitXi mathematical italic capital xiU+1D6F0 𝛰 \(𝛰\) \(\mitOmicron\) \mitOmicron mathematical italic capital omicronU+1D6F1 𝛱 \(𝛱\) \(\mitPi\) \mitPi mathematical italic capital piU+1D6F2 𝛲 \(𝛲\) \(\mitRho\) \mitRho mathematical italic capital rhoU+1D6F3 𝛳 \(𝛳\) \(\mitvarTheta\) \mitvarTheta mathematical italic capital theta symbolU+1D6F4 𝛴 \(𝛴\) \(\mitSigma\) \mitSigma mathematical italic capital sigmaU+1D6F5 𝛵 \(𝛵\) \(\mitTau\) \mitTau mathematical italic capital tauU+1D6F6 𝛶 \(𝛶\) \(\mitUpsilon\) \mitUpsilon mathematical italic capital upsilonU+1D6F7 𝛷 \(𝛷\) \(\mitPhi\) \mitPhi mathematical italic capital phiU+1D6F8 𝛸 \(𝛸\) \(\mitChi\) \mitChi mathematical italic capital chiU+1D6F9 𝛹 \(𝛹\) \(\mitPsi\) \mitPsi mathematical italic capital psiU+1D6FA 𝛺 \(𝛺\) \(\mitOmega\) \mitOmega mathematical italic capital omegaU+1D6FC 𝛼 \(𝛼\) \(\mitalpha\) \mitalpha mathematical italic small alphaU+1D6FD 𝛽 \(𝛽\) \(\mitbeta\) \mitbeta mathematical italic small betaU+1D6FE 𝛾 \(𝛾\) \(\mitgamma\) \mitgamma mathematical italic small gammaU+1D6FF 𝛿 \(𝛿\) \(\mitdelta\) \mitdelta mathematical italic small deltaU+1D700 𝜀 \(𝜀\) \(\mitvarepsilon\) \mitvarepsilon mathematical italic small varepsilonU+1D701 𝜁 \(𝜁\) \(\mitzeta\) \mitzeta mathematical italic small zetaU+1D702 𝜂 \(𝜂\) \(\miteta\) \miteta mathematical italic small etaU+1D703 𝜃 \(𝜃\) \(\mittheta\) \mittheta mathematical italic small thetaU+1D704 𝜄 \(𝜄\) \(\mitiota\) \mitiota mathematical italic small iotaU+1D705 𝜅 \(𝜅\) \(\mitkappa\) \mitkappa mathematical italic small kappaU+1D706 𝜆 \(𝜆\) \(\mitlambda\) \mitlambda mathematical italic small lambdaU+1D707 𝜇 \(𝜇\) \(\mitmu\) \mitmu mathematical italic small muU+1D708 𝜈 \(𝜈\) \(\mitnu\) \mitnu mathematical italic small nuU+1D709 𝜉 \(𝜉\) \(\mitxi\) \mitxi mathematical italic small xiU+1D70A 𝜊 \(𝜊\) \(\mitomicron\) \mitomicron mathematical italic small omicronU+1D70B 𝜋 \(𝜋\) \(\mitpi\) \mitpi mathematical italic small piU+1D70C 𝜌 \(𝜌\) \(\mitrho\) \mitrho mathematical italic small rhoU+1D70D 𝜍 \(𝜍\) \(\mitvarsigma\) \mitvarsigma mathematical italic small final sigmaU+1D70E 𝜎 \(𝜎\) \(\mitsigma\) \mitsigma mathematical italic small sigmaU+1D70F 𝜏 \(𝜏\) \(\mittau\) \mittau mathematical italic small tauU+1D710 𝜐 \(𝜐\) \(\mitupsilon\) \mitupsilon mathematical italic small upsilonU+1D711 𝜑 \(𝜑\) \(\mitvarphi\) \mitvarphi mathematical italic small phiU+1D712 𝜒 \(𝜒\) \(\mitchi\) \mitchi mathematical italic small chiU+1D713 𝜓 \(𝜓\) \(\mitpsi\) \mitpsi mathematical italic small psiU+1D714 𝜔 \(𝜔\) \(\mitomega\) \mitomega mathematical italic small omegaU+1D715 𝜕 \(𝜕\) \(\mitpartial\) \mitpartial mathematical italic partial differentialU+1D716 𝜖 \(𝜖\) \(\mitepsilon\) \mitepsilon mathematical italic varepsilon symbolU+1D717 𝜗 \(𝜗\) \(\mitvartheta\) \mitvartheta mathematical italic theta symbolU+1D718 𝜘 \(𝜘\) \(\mitvarkappa\) \mitvarkappa mathematical italic kappa symbolU+1D719 𝜙 \(𝜙\) \(\mitphi\) \mitphi mathematical italic phi symbolU+1D71A 𝜚 \(𝜚\) \(\mitvarrho\) \mitvarrho mathematical italic rho symbolU+1D71B 𝜛 \(𝜛\) \(\mitvarpi\) \mitvarpi mathematical italic pi symbolU+1D49C 𝒜 \(𝒜\) \(\mscrA\) \mscrA mathematical script capital aU+1D49E 𝒞 \(𝒞\) \(\mscrC\) \mscrC mathematical script capital cU+1D49F 𝒟 \(𝒟\) \(\mscrD\) \mscrD mathematical script capital dU+1D4A2 𝒢 \(𝒢\) \(\mscrG\) \mscrG mathematical script capital gU+1D4A5 𝒥 \(𝒥\) \(\mscrJ\) \mscrJ mathematical script capital jU+1D4A6 𝒦 \(𝒦\) \(\mscrK\) \mscrK mathematical script capital kU+1D4A9 𝒩 \(𝒩\) \(\mscrN\) \mscrN mathematical script capital nU+1D4AA 𝒪 \(𝒪\) \(\mscrO\) \mscrO mathematical script capital oU+1D4AB 𝒫 \(𝒫\) \(\mscrP\) \mscrP mathematical script capital pU+1D4AC 𝒬 \(𝒬\) \(\mscrQ\) \mscrQ mathematical script capital qU+1D4AE 𝒮 \(𝒮\) \(\mscrS\) \mscrS mathematical script capital sU+1D4AF 𝒯 \(𝒯\) \(\mscrT\) \mscrT mathematical script capital tU+1D4B0 𝒰 \(𝒰\) \(\mscrU\) \mscrU mathematical script capital uU+1D4B1 𝒱 \(𝒱\) \(\mscrV\) \mscrV mathematical script capital vU+1D4B2 𝒲 \(𝒲\) \(\mscrW\) \mscrW mathematical script capital wU+1D4B3 𝒳 \(𝒳\) \(\mscrX\) \mscrX mathematical script capital xU+1D4B4 𝒴 \(𝒴\) \(\mscrY\) \mscrY mathematical script capital yU+1D4B5 𝒵 \(𝒵\) \(\mscrZ\) \mscrZ mathematical script capital zU+1D4B6 𝒶 \(𝒶\) \(\mscra\) \mscra mathematical script small aU+1D4B7 𝒷 \(𝒷\) \(\mscrb\) \mscrb mathematical script small bU+1D4B8 𝒸 \(𝒸\) \(\mscrc\) \mscrc mathematical script small cU+1D4B9 𝒹 \(𝒹\) \(\mscrd\) \mscrd mathematical script small dU+1D4BB 𝒻 \(𝒻\) \(\mscrf\) \mscrf mathematical script small fU+1D4BD 𝒽 \(𝒽\) \(\mscrh\) \mscrh mathematical script small hU+1D4BE 𝒾 \(𝒾\) \(\mscri\) \mscri mathematical script small iU+1D4BF 𝒿 \(𝒿\) \(\mscrj\) \mscrj mathematical script small jU+1D4C0 𝓀 \(𝓀\) \(\mscrk\) \mscrk mathematical script small kU+1D4C1 𝓁 \(𝓁\) \(\mscrl\) \mscrl mathematical script small lU+1D4C2 𝓂 \(𝓂\) \(\mscrm\) \mscrm mathematical script small mU+1D4C3 𝓃 \(𝓃\) \(\mscrn\) \mscrn mathematical script small nU+1D4C5 𝓅 \(𝓅\) \(\mscrp\) \mscrp mathematical script small pU+1D4C6 𝓆 \(𝓆\) \(\mscrq\) \mscrq mathematical script small qU+1D4C7 𝓇 \(𝓇\) \(\mscrr\) \mscrr mathematical script small rU+1D4C8 𝓈 \(𝓈\) \(\mscrs\) \mscrs mathematical script small sU+1D4C9 𝓉 \(𝓉\) \(\mscrt\) \mscrt mathematical script small tU+1D4CA 𝓊 \(𝓊\) \(\mscru\) \mscru mathematical script small uU+1D4CB 𝓋 \(𝓋\) \(\mscrv\) \mscrv mathematical script small vU+1D4CC 𝓌 \(𝓌\) \(\mscrw\) \mscrw mathematical script small wU+1D4CD 𝓍 \(𝓍\) \(\mscrx\) \mscrx mathematical script small xU+1D4CE 𝓎 \(𝓎\) \(\mscry\) \mscry mathematical script small yU+1D4CF 𝓏 \(𝓏\) \(\mscrz\) \mscrz mathematical script small zU+1D504 𝔄 \(𝔄\) \(\mfrakA\) \mfrakA mathematical fraktur capital aU+1D505 𝔅 \(𝔅\) \(\mfrakB\) \mfrakB mathematical fraktur capital bU+1D507 𝔇 \(𝔇\) \(\mfrakD\) \mfrakD mathematical fraktur capital dU+1D508 𝔈 \(𝔈\) \(\mfrakE\) \mfrakE mathematical fraktur capital eU+1D509 𝔉 \(𝔉\) \(\mfrakF\) \mfrakF mathematical fraktur capital fU+1D50A 𝔊 \(𝔊\) \(\mfrakG\) \mfrakG mathematical fraktur capital gU+1D50D 𝔍 \(𝔍\) \(\mfrakJ\) \mfrakJ mathematical fraktur capital jU+1D50E 𝔎 \(𝔎\) \(\mfrakK\) \mfrakK mathematical fraktur capital kU+1D50F 𝔏 \(𝔏\) \(\mfrakL\) \mfrakL mathematical fraktur capital lU+1D510 𝔐 \(𝔐\) \(\mfrakM\) \mfrakM mathematical fraktur capital mU+1D511 𝔑 \(𝔑\) \(\mfrakN\) \mfrakN mathematical fraktur capital nU+1D512 𝔒 \(𝔒\) \(\mfrakO\) \mfrakO mathematical fraktur capital oU+1D513 𝔓 \(𝔓\) \(\mfrakP\) \mfrakP mathematical fraktur capital pU+1D514 𝔔 \(𝔔\) \(\mfrakQ\) \mfrakQ mathematical fraktur capital qU+1D516 𝔖 \(𝔖\) \(\mfrakS\) \mfrakS mathematical fraktur capital sU+1D517 𝔗 \(𝔗\) \(\mfrakT\) \mfrakT mathematical fraktur capital tU+1D518 𝔘 \(𝔘\) \(\mfrakU\) \mfrakU mathematical fraktur capital uU+1D519 𝔙 \(𝔙\) \(\mfrakV\) \mfrakV mathematical fraktur capital vU+1D51A 𝔚 \(𝔚\) \(\mfrakW\) \mfrakW mathematical fraktur capital wU+1D51B 𝔛 \(𝔛\) \(\mfrakX\) \mfrakX mathematical fraktur capital xU+1D51C 𝔜 \(𝔜\) \(\mfrakY\) \mfrakY mathematical fraktur capital yU+1D51E 𝔞 \(𝔞\) \(\mfraka\) \mfraka mathematical fraktur small aU+1D51F 𝔟 \(𝔟\) \(\mfrakb\) \mfrakb mathematical fraktur small bU+1D520 𝔠 \(𝔠\) \(\mfrakc\) \mfrakc mathematical fraktur small cU+1D521 𝔡 \(𝔡\) \(\mfrakd\) \mfrakd mathematical fraktur small dU+1D522 𝔢 \(𝔢\) \(\mfrake\) \mfrake mathematical fraktur small eU+1D523 𝔣 \(𝔣\) \(\mfrakf\) \mfrakf mathematical fraktur small fU+1D524 𝔤 \(𝔤\) \(\mfrakg\) \mfrakg mathematical fraktur small gU+1D525 𝔥 \(𝔥\) \(\mfrakh\) \mfrakh mathematical fraktur small hU+1D526 𝔦 \(𝔦\) \(\mfraki\) \mfraki mathematical fraktur small iU+1D527 𝔧 \(𝔧\) \(\mfrakj\) \mfrakj mathematical fraktur small jU+1D528 𝔨 \(𝔨\) \(\mfrakk\) \mfrakk mathematical fraktur small kU+1D529 𝔩 \(𝔩\) \(\mfrakl\) \mfrakl mathematical fraktur small lU+1D52A 𝔪 \(𝔪\) \(\mfrakm\) \mfrakm mathematical fraktur small mU+1D52B 𝔫 \(𝔫\) \(\mfrakn\) \mfrakn mathematical fraktur small nU+1D52C 𝔬 \(𝔬\) \(\mfrako\) \mfrako mathematical fraktur small oU+1D52D 𝔭 \(𝔭\) \(\mfrakp\) \mfrakp mathematical fraktur small pU+1D52E 𝔮 \(𝔮\) \(\mfrakq\) \mfrakq mathematical fraktur small qU+1D52F 𝔯 \(𝔯\) \(\mfrakr\) \mfrakr mathematical fraktur small rU+1D530 𝔰 \(𝔰\) \(\mfraks\) \mfraks mathematical fraktur small sU+1D531 𝔱 \(𝔱\) \(\mfrakt\) \mfrakt mathematical fraktur small tU+1D532 𝔲 \(𝔲\) \(\mfraku\) \mfraku mathematical fraktur small uU+1D533 𝔳 \(𝔳\) \(\mfrakv\) \mfrakv mathematical fraktur small vU+1D534 𝔴 \(𝔴\) \(\mfrakw\) \mfrakw mathematical fraktur small wU+1D535 𝔵 \(𝔵\) \(\mfrakx\) \mfrakx mathematical fraktur small xU+1D536 𝔶 \(𝔶\) \(\mfraky\) \mfraky mathematical fraktur small yU+1D537 𝔷 \(𝔷\) \(\mfrakz\) \mfrakz mathematical fraktur small zU+1D7D8 𝟘 \(𝟘\) \(\Bbbzero\) \Bbbzero mathematical double-struck digit 0U+1D7D9 𝟙 \(𝟙\) \(\Bbbone\) \Bbbone mathematical double-struck digit 1U+1D7DA 𝟚 \(𝟚\) \(\Bbbtwo\) \Bbbtwo mathematical double-struck digit 2U+1D7DB 𝟛 \(𝟛\) \(\Bbbthree\) \Bbbthree mathematical double-struck digit 3U+1D7DC 𝟜 \(𝟜\) \(\Bbbfour\) \Bbbfour mathematical double-struck digit 4U+1D7DD 𝟝 \(𝟝\) \(\Bbbfive\) \Bbbfive mathematical double-struck digit 5U+1D7DE 𝟞 \(𝟞\) \(\Bbbsix\) \Bbbsix mathematical double-struck digit 6U+1D7DF 𝟟 \(𝟟\) \(\Bbbseven\) \Bbbseven mathematical double-struck digit 7U+1D7E0 𝟠 \(𝟠\) \(\Bbbeight\) \Bbbeight mathematical double-struck digit 8U+1D7E1 𝟡 \(𝟡\) \(\Bbbnine\) \Bbbnine mathematical double-struck digit 9U+1D538 𝔸 \(𝔸\) \(\BbbA\) \BbbA mathematical double-struck capital aU+1D539 𝔹 \(𝔹\) \(\BbbB\) \BbbB mathematical double-struck capital bU+1D53B 𝔻 \(𝔻\) \(\BbbD\) \BbbD mathematical double-struck capital dU+1D53C 𝔼 \(𝔼\) \(\BbbE\) \BbbE mathematical double-struck capital eU+1D53D 𝔽 \(𝔽\) \(\BbbF\) \BbbF mathematical double-struck capital fU+1D53E 𝔾 \(𝔾\) \(\BbbG\) \BbbG mathematical double-struck capital gU+1D540 𝕀 \(𝕀\) \(\BbbI\) \BbbI mathematical double-struck capital iU+1D541 𝕁 \(𝕁\) \(\BbbJ\) \BbbJ mathematical double-struck capital jU+1D542 𝕂 \(𝕂\) \(\BbbK\) \BbbK mathematical double-struck capital kU+1D543 𝕃 \(𝕃\) \(\BbbL\) \BbbL mathematical double-struck capital lU+1D544 𝕄 \(𝕄\) \(\BbbM\) \BbbM mathematical double-struck capital mU+1D546 𝕆 \(𝕆\) \(\BbbO\) \BbbO mathematical double-struck capital oU+1D54A 𝕊 \(𝕊\) \(\BbbS\) \BbbS mathematical double-struck capital sU+1D54B 𝕋 \(𝕋\) \(\BbbT\) \BbbT mathematical double-struck capital tU+1D54C 𝕌 \(𝕌\) \(\BbbU\) \BbbU mathematical double-struck capital uU+1D54D 𝕍 \(𝕍\) \(\BbbV\) \BbbV mathematical double-struck capital vU+1D54E 𝕎 \(𝕎\) \(\BbbW\) \BbbW mathematical double-struck capital wU+1D54F 𝕏 \(𝕏\) \(\BbbX\) \BbbX mathematical double-struck capital xU+1D550 𝕐 \(𝕐\) \(\BbbY\) \BbbY mathematical double-struck capital yU+1D552 𝕒 \(𝕒\) \(\Bbba\) \Bbba mathematical double-struck small aU+1D553 𝕓 \(𝕓\) \(\Bbbb\) \Bbbb mathematical double-struck small bU+1D554 𝕔 \(𝕔\) \(\Bbbc\) \Bbbc mathematical double-struck small cU+1D555 𝕕 \(𝕕\) \(\Bbbd\) \Bbbd mathematical double-struck small dU+1D556 𝕖 \(𝕖\) \(\Bbbe\) \Bbbe mathematical double-struck small eU+1D557 𝕗 \(𝕗\) \(\Bbbf\) \Bbbf mathematical double-struck small fU+1D558 𝕘 \(𝕘\) \(\Bbbg\) \Bbbg mathematical double-struck small gU+1D559 𝕙 \(𝕙\) \(\Bbbh\) \Bbbh mathematical double-struck small hU+1D55A 𝕚 \(𝕚\) \(\Bbbi\) \Bbbi mathematical double-struck small iU+1D55B 𝕛 \(𝕛\) \(\Bbbj\) \Bbbj mathematical double-struck small jU+1D55C 𝕜 \(𝕜\) \(\Bbbk\) \Bbbk mathematical double-struck small kU+1D55D 𝕝 \(𝕝\) \(\Bbbl\) \Bbbl mathematical double-struck small lU+1D55E 𝕞 \(𝕞\) \(\Bbbm\) \Bbbm mathematical double-struck small mU+1D55F 𝕟 \(𝕟\) \(\Bbbn\) \Bbbn mathematical double-struck small nU+1D560 𝕠 \(𝕠\) \(\Bbbo\) \Bbbo mathematical double-struck small oU+1D561 𝕡 \(𝕡\) \(\Bbbp\) \Bbbp mathematical double-struck small pU+1D562 𝕢 \(𝕢\) \(\Bbbq\) \Bbbq mathematical double-struck small qU+1D563 𝕣 \(𝕣\) \(\Bbbr\) \Bbbr mathematical double-struck small rU+1D564 𝕤 \(𝕤\) \(\Bbbs\) \Bbbs mathematical double-struck small sU+1D565 𝕥 \(𝕥\) \(\Bbbt\) \Bbbt mathematical double-struck small tU+1D566 𝕦 \(𝕦\) \(\Bbbu\) \Bbbu mathematical double-struck small uU+1D567 𝕧 \(𝕧\) \(\Bbbv\) \Bbbv mathematical double-struck small vU+1D568 𝕨 \(𝕨\) \(\Bbbw\) \Bbbw mathematical double-struck small wU+1D569 𝕩 \(𝕩\) \(\Bbbx\) \Bbbx mathematical double-struck small xU+1D56A 𝕪 \(𝕪\) \(\Bbby\) \Bbby mathematical double-struck small yU+1D56B 𝕫 \(𝕫\) \(\Bbbz\) \Bbbz mathematical double-struck small zU+1D7E2 𝟢 \(𝟢\) \(\msanszero\) \msanszero mathematical sans-serif digit 0U+1D7E3 𝟣 \(𝟣\) \(\msansone\) \msansone mathematical sans-serif digit 1U+1D7E4 𝟤 \(𝟤\) \(\msanstwo\) \msanstwo mathematical sans-serif digit 2U+1D7E5 𝟥 \(𝟥\) \(\msansthree\) \msansthree mathematical sans-serif digit 3U+1D7E6 𝟦 \(𝟦\) \(\msansfour\) \msansfour mathematical sans-serif digit 4U+1D7E7 𝟧 \(𝟧\) \(\msansfive\) \msansfive mathematical sans-serif digit 5U+1D7E8 𝟨 \(𝟨\) \(\msanssix\) \msanssix mathematical sans-serif digit 6U+1D7E9 𝟩 \(𝟩\) \(\msansseven\) \msansseven mathematical sans-serif digit 7U+1D7EA 𝟪 \(𝟪\) \(\msanseight\) \msanseight mathematical sans-serif digit 8U+1D7EB 𝟫 \(𝟫\) \(\msansnine\) \msansnine mathematical sans-serif digit 9U+1D5A0 𝖠 \(𝖠\) \(\msansA\) \msansA mathematical sans-serif capital aU+1D5A1 𝖡 \(𝖡\) \(\msansB\) \msansB mathematical sans-serif capital bU+1D5A2 𝖢 \(𝖢\) \(\msansC\) \msansC mathematical sans-serif capital cU+1D5A3 𝖣 \(𝖣\) \(\msansD\) \msansD mathematical sans-serif capital dU+1D5A4 𝖤 \(𝖤\) \(\msansE\) \msansE mathematical sans-serif capital eU+1D5A5 𝖥 \(𝖥\) \(\msansF\) \msansF mathematical sans-serif capital fU+1D5A6 𝖦 \(𝖦\) \(\msansG\) \msansG mathematical sans-serif capital gU+1D5A7 𝖧 \(𝖧\) \(\msansH\) \msansH mathematical sans-serif capital hU+1D5A8 𝖨 \(𝖨\) \(\msansI\) \msansI mathematical sans-serif capital iU+1D5A9 𝖩 \(𝖩\) \(\msansJ\) \msansJ mathematical sans-serif capital jU+1D5AA 𝖪 \(𝖪\) \(\msansK\) \msansK mathematical sans-serif capital kU+1D5AB 𝖫 \(𝖫\) \(\msansL\) \msansL mathematical sans-serif capital lU+1D5AC 𝖬 \(𝖬\) \(\msansM\) \msansM mathematical sans-serif capital mU+1D5AD 𝖭 \(𝖭\) \(\msansN\) \msansN mathematical sans-serif capital nU+1D5AE 𝖮 \(𝖮\) \(\msansO\) \msansO mathematical sans-serif capital oU+1D5AF 𝖯 \(𝖯\) \(\msansP\) \msansP mathematical sans-serif capital pU+1D5B0 𝖰 \(𝖰\) \(\msansQ\) \msansQ mathematical sans-serif capital qU+1D5B1 𝖱 \(𝖱\) \(\msansR\) \msansR mathematical sans-serif capital rU+1D5B2 𝖲 \(𝖲\) \(\msansS\) \msansS mathematical sans-serif capital sU+1D5B3 𝖳 \(𝖳\) \(\msansT\) \msansT mathematical sans-serif capital tU+1D5B4 𝖴 \(𝖴\) \(\msansU\) \msansU mathematical sans-serif capital uU+1D5B5 𝖵 \(𝖵\) \(\msansV\) \msansV mathematical sans-serif capital vU+1D5B6 𝖶 \(𝖶\) \(\msansW\) \msansW mathematical sans-serif capital wU+1D5B7 𝖷 \(𝖷\) \(\msansX\) \msansX mathematical sans-serif capital xU+1D5B8 𝖸 \(𝖸\) \(\msansY\) \msansY mathematical sans-serif capital yU+1D5B9 𝖹 \(𝖹\) \(\msansZ\) \msansZ mathematical sans-serif capital zU+1D5BA 𝖺 \(𝖺\) \(\msansa\) \msansa mathematical sans-serif small aU+1D5BB 𝖻 \(𝖻\) \(\msansb\) \msansb mathematical sans-serif small bU+1D5BC 𝖼 \(𝖼\) \(\msansc\) \msansc mathematical sans-serif small cU+1D5BD 𝖽 \(𝖽\) \(\msansd\) \msansd mathematical sans-serif small dU+1D5BE 𝖾 \(𝖾\) \(\msanse\) \msanse mathematical sans-serif small eU+1D5BF 𝖿 \(𝖿\) \(\msansf\) \msansf mathematical sans-serif small fU+1D5C0 𝗀 \(𝗀\) \(\msansg\) \msansg mathematical sans-serif small gU+1D5C1 𝗁 \(𝗁\) \(\msansh\) \msansh mathematical sans-serif small hU+1D5C2 𝗂 \(𝗂\) \(\msansi\) \msansi mathematical sans-serif small iU+1D5C3 𝗃 \(𝗃\) \(\msansj\) \msansj mathematical sans-serif small jU+1D5C4 𝗄 \(𝗄\) \(\msansk\) \msansk mathematical sans-serif small kU+1D5C5 𝗅 \(𝗅\) \(\msansl\) \msansl mathematical sans-serif small lU+1D5C6 𝗆 \(𝗆\) \(\msansm\) \msansm mathematical sans-serif small mU+1D5C7 𝗇 \(𝗇\) \(\msansn\) \msansn mathematical sans-serif small nU+1D5C8 𝗈 \(𝗈\) \(\msanso\) \msanso mathematical sans-serif small oU+1D5C9 𝗉 \(𝗉\) \(\msansp\) \msansp mathematical sans-serif small pU+1D5CA 𝗊 \(𝗊\) \(\msansq\) \msansq mathematical sans-serif small qU+1D5CB 𝗋 \(𝗋\) \(\msansr\) \msansr mathematical sans-serif small rU+1D5CC 𝗌 \(𝗌\) \(\msanss\) \msanss mathematical sans-serif small sU+1D5CD 𝗍 \(𝗍\) \(\msanst\) \msanst mathematical sans-serif small tU+1D5CE 𝗎 \(𝗎\) \(\msansu\) \msansu mathematical sans-serif small uU+1D5CF 𝗏 \(𝗏\) \(\msansv\) \msansv mathematical sans-serif small vU+1D5D0 𝗐 \(𝗐\) \(\msansw\) \msansw mathematical sans-serif small wU+1D5D1 𝗑 \(𝗑\) \(\msansx\) \msansx mathematical sans-serif small xU+1D5D2 𝗒 \(𝗒\) \(\msansy\) \msansy mathematical sans-serif small yU+1D5D3 𝗓 \(𝗓\) \(\msansz\) \msansz mathematical sans-serif small zU+1D608 𝘈 \(𝘈\) \(\mitsansA\) \mitsansA mathematical sans-serif italic capital aU+1D609 𝘉 \(𝘉\) \(\mitsansB\) \mitsansB mathematical sans-serif italic capital bU+1D60A 𝘊 \(𝘊\) \(\mitsansC\) \mitsansC mathematical sans-serif italic capital cU+1D60B 𝘋 \(𝘋\) \(\mitsansD\) \mitsansD mathematical sans-serif italic capital dU+1D60C 𝘌 \(𝘌\) \(\mitsansE\) \mitsansE mathematical sans-serif italic capital eU+1D60D 𝘍 \(𝘍\) \(\mitsansF\) \mitsansF mathematical sans-serif italic capital fU+1D60E 𝘎 \(𝘎\) \(\mitsansG\) \mitsansG mathematical sans-serif italic capital gU+1D60F 𝘏 \(𝘏\) \(\mitsansH\) \mitsansH mathematical sans-serif italic capital hU+1D610 𝘐 \(𝘐\) \(\mitsansI\) \mitsansI mathematical sans-serif italic capital iU+1D611 𝘑 \(𝘑\) \(\mitsansJ\) \mitsansJ mathematical sans-serif italic capital jU+1D612 𝘒 \(𝘒\) \(\mitsansK\) \mitsansK mathematical sans-serif italic capital kU+1D613 𝘓 \(𝘓\) \(\mitsansL\) \mitsansL mathematical sans-serif italic capital lU+1D614 𝘔 \(𝘔\) \(\mitsansM\) \mitsansM mathematical sans-serif italic capital mU+1D615 𝘕 \(𝘕\) \(\mitsansN\) \mitsansN mathematical sans-serif italic capital nU+1D616 𝘖 \(𝘖\) \(\mitsansO\) \mitsansO mathematical sans-serif italic capital oU+1D617 𝘗 \(𝘗\) \(\mitsansP\) \mitsansP mathematical sans-serif italic capital pU+1D618 𝘘 \(𝘘\) \(\mitsansQ\) \mitsansQ mathematical sans-serif italic capital qU+1D619 𝘙 \(𝘙\) \(\mitsansR\) \mitsansR mathematical sans-serif italic capital rU+1D61A 𝘚 \(𝘚\) \(\mitsansS\) \mitsansS mathematical sans-serif italic capital sU+1D61B 𝘛 \(𝘛\) \(\mitsansT\) \mitsansT mathematical sans-serif italic capital tU+1D61C 𝘜 \(𝘜\) \(\mitsansU\) \mitsansU mathematical sans-serif italic capital uU+1D61D 𝘝 \(𝘝\) \(\mitsansV\) \mitsansV mathematical sans-serif italic capital vU+1D61E 𝘞 \(𝘞\) \(\mitsansW\) \mitsansW mathematical sans-serif italic capital wU+1D61F 𝘟 \(𝘟\) \(\mitsansX\) \mitsansX mathematical sans-serif italic capital xU+1D620 𝘠 \(𝘠\) \(\mitsansY\) \mitsansY mathematical sans-serif italic capital yU+1D621 𝘡 \(𝘡\) \(\mitsansZ\) \mitsansZ mathematical sans-serif italic capital zU+1D622 𝘢 \(𝘢\) \(\mitsansa\) \mitsansa mathematical sans-serif italic small aU+1D623 𝘣 \(𝘣\) \(\mitsansb\) \mitsansb mathematical sans-serif italic small bU+1D624 𝘤 \(𝘤\) \(\mitsansc\) \mitsansc mathematical sans-serif italic small cU+1D625 𝘥 \(𝘥\) \(\mitsansd\) \mitsansd mathematical sans-serif italic small dU+1D626 𝘦 \(𝘦\) \(\mitsanse\) \mitsanse mathematical sans-serif italic small eU+1D627 𝘧 \(𝘧\) \(\mitsansf\) \mitsansf mathematical sans-serif italic small fU+1D628 𝘨 \(𝘨\) \(\mitsansg\) \mitsansg mathematical sans-serif italic small gU+1D629 𝘩 \(𝘩\) \(\mitsansh\) \mitsansh mathematical sans-serif italic small hU+1D62A 𝘪 \(𝘪\) \(\mitsansi\) \mitsansi mathematical sans-serif italic small iU+1D62B 𝘫 \(𝘫\) \(\mitsansj\) \mitsansj mathematical sans-serif italic small jU+1D62C 𝘬 \(𝘬\) \(\mitsansk\) \mitsansk mathematical sans-serif italic small kU+1D62D 𝘭 \(𝘭\) \(\mitsansl\) \mitsansl mathematical sans-serif italic small lU+1D62E 𝘮 \(𝘮\) \(\mitsansm\) \mitsansm mathematical sans-serif italic small mU+1D62F 𝘯 \(𝘯\) \(\mitsansn\) \mitsansn mathematical sans-serif italic small nU+1D630 𝘰 \(𝘰\) \(\mitsanso\) \mitsanso mathematical sans-serif italic small oU+1D631 𝘱 \(𝘱\) \(\mitsansp\) \mitsansp mathematical sans-serif italic small pU+1D632 𝘲 \(𝘲\) \(\mitsansq\) \mitsansq mathematical sans-serif italic small qU+1D633 𝘳 \(𝘳\) \(\mitsansr\) \mitsansr mathematical sans-serif italic small rU+1D634 𝘴 \(𝘴\) \(\mitsanss\) \mitsanss mathematical sans-serif italic small sU+1D635 𝘵 \(𝘵\) \(\mitsanst\) \mitsanst mathematical sans-serif italic small tU+1D636 𝘶 \(𝘶\) \(\mitsansu\) \mitsansu mathematical sans-serif italic small uU+1D637 𝘷 \(𝘷\) \(\mitsansv\) \mitsansv mathematical sans-serif italic small vU+1D638 𝘸 \(𝘸\) \(\mitsansw\) \mitsansw mathematical sans-serif italic small wU+1D639 𝘹 \(𝘹\) \(\mitsansx\) \mitsansx mathematical sans-serif italic small xU+1D63A 𝘺 \(𝘺\) \(\mitsansy\) \mitsansy mathematical sans-serif italic small yU+1D63B 𝘻 \(𝘻\) \(\mitsansz\) \mitsansz mathematical sans-serif italic small zU+1D7F6 𝟶 \(𝟶\) \(\mttzero\) \mttzero mathematical monospace digit 0U+1D7F7 𝟷 \(𝟷\) \(\mttone\) \mttone mathematical monospace digit 1U+1D7F8 𝟸 \(𝟸\) \(\mtttwo\) \mtttwo mathematical monospace digit 2U+1D7F9 𝟹 \(𝟹\) \(\mttthree\) \mttthree mathematical monospace digit 3U+1D7FA 𝟺 \(𝟺\) \(\mttfour\) \mttfour mathematical monospace digit 4U+1D7FB 𝟻 \(𝟻\) \(\mttfive\) \mttfive mathematical monospace digit 5U+1D7FC 𝟼 \(𝟼\) \(\mttsix\) \mttsix mathematical monospace digit 6U+1D7FD 𝟽 \(𝟽\) \(\mttseven\) \mttseven mathematical monospace digit 7U+1D7FE 𝟾 \(𝟾\) \(\mtteight\) \mtteight mathematical monospace digit 8U+1D7FF 𝟿 \(𝟿\) \(\mttnine\) \mttnine mathematical monospace digit 9U+1D670 𝙰 \(𝙰\) \(\mttA\) \mttA mathematical monospace capital aU+1D671 𝙱 \(𝙱\) \(\mttB\) \mttB mathematical monospace capital bU+1D672 𝙲 \(𝙲\) \(\mttC\) \mttC mathematical monospace capital cU+1D673 𝙳 \(𝙳\) \(\mttD\) \mttD mathematical monospace capital dU+1D674 𝙴 \(𝙴\) \(\mttE\) \mttE mathematical monospace capital eU+1D675 𝙵 \(𝙵\) \(\mttF\) \mttF mathematical monospace capital fU+1D676 𝙶 \(𝙶\) \(\mttG\) \mttG mathematical monospace capital gU+1D677 𝙷 \(𝙷\) \(\mttH\) \mttH mathematical monospace capital hU+1D678 𝙸 \(𝙸\) \(\mttI\) \mttI mathematical monospace capital iU+1D679 𝙹 \(𝙹\) \(\mttJ\) \mttJ mathematical monospace capital jU+1D67A 𝙺 \(𝙺\) \(\mttK\) \mttK mathematical monospace capital kU+1D67B 𝙻 \(𝙻\) \(\mttL\) \mttL mathematical monospace capital lU+1D67C 𝙼 \(𝙼\) \(\mttM\) \mttM mathematical monospace capital mU+1D67D 𝙽 \(𝙽\) \(\mttN\) \mttN mathematical monospace capital nU+1D67E 𝙾 \(𝙾\) \(\mttO\) \mttO mathematical monospace capital oU+1D67F 𝙿 \(𝙿\) \(\mttP\) \mttP mathematical monospace capital pU+1D680 𝚀 \(𝚀\) \(\mttQ\) \mttQ mathematical monospace capital qU+1D681 𝚁 \(𝚁\) \(\mttR\) \mttR mathematical monospace capital rU+1D682 𝚂 \(𝚂\) \(\mttS\) \mttS mathematical monospace capital sU+1D683 𝚃 \(𝚃\) \(\mttT\) \mttT mathematical monospace capital tU+1D684 𝚄 \(𝚄\) \(\mttU\) \mttU mathematical monospace capital uU+1D685 𝚅 \(𝚅\) \(\mttV\) \mttV mathematical monospace capital vU+1D686 𝚆 \(𝚆\) \(\mttW\) \mttW mathematical monospace capital wU+1D687 𝚇 \(𝚇\) \(\mttX\) \mttX mathematical monospace capital xU+1D688 𝚈 \(𝚈\) \(\mttY\) \mttY mathematical monospace capital yU+1D689 𝚉 \(𝚉\) \(\mttZ\) \mttZ mathematical monospace capital zU+1D68A 𝚊 \(𝚊\) \(\mtta\) \mtta mathematical monospace small aU+1D68B 𝚋 \(𝚋\) \(\mttb\) \mttb mathematical monospace small bU+1D68C 𝚌 \(𝚌\) \(\mttc\) \mttc mathematical monospace small cU+1D68D 𝚍 \(𝚍\) \(\mttd\) \mttd mathematical monospace small dU+1D68E 𝚎 \(𝚎\) \(\mtte\) \mtte mathematical monospace small eU+1D68F 𝚏 \(𝚏\) \(\mttf\) \mttf mathematical monospace small fU+1D690 𝚐 \(𝚐\) \(\mttg\) \mttg mathematical monospace small gU+1D691 𝚑 \(𝚑\) \(\mtth\) \mtth mathematical monospace small hU+1D692 𝚒 \(𝚒\) \(\mtti\) \mtti mathematical monospace small iU+1D693 𝚓 \(𝚓\) \(\mttj\) \mttj mathematical monospace small jU+1D694 𝚔 \(𝚔\) \(\mttk\) \mttk mathematical monospace small kU+1D695 𝚕 \(𝚕\) \(\mttl\) \mttl mathematical monospace small lU+1D696 𝚖 \(𝚖\) \(\mttm\) \mttm mathematical monospace small mU+1D697 𝚗 \(𝚗\) \(\mttn\) \mttn mathematical monospace small nU+1D698 𝚘 \(𝚘\) \(\mtto\) \mtto mathematical monospace small oU+1D699 𝚙 \(𝚙\) \(\mttp\) \mttp mathematical monospace small pU+1D69A 𝚚 \(𝚚\) \(\mttq\) \mttq mathematical monospace small qU+1D69B 𝚛 \(𝚛\) \(\mttr\) \mttr mathematical monospace small rU+1D69C 𝚜 \(𝚜\) \(\mtts\) \mtts mathematical monospace small sU+1D69D 𝚝 \(𝚝\) \(\mttt\) \mttt mathematical monospace small tU+1D69E 𝚞 \(𝚞\) \(\mttu\) \mttu mathematical monospace small uU+1D69F 𝚟 \(𝚟\) \(\mttv\) \mttv mathematical monospace small vU+1D6A0 𝚠 \(𝚠\) \(\mttw\) \mttw mathematical monospace small wU+1D6A1 𝚡 \(𝚡\) \(\mttx\) \mttx mathematical monospace small xU+1D6A2 𝚢 \(𝚢\) \(\mtty\) \mtty mathematical monospace small yU+1D6A3 𝚣 \(𝚣\) \(\mttz\) \mttz mathematical monospace small zU+1D7CE 𝟎 \(𝟎\) \(\mbfzero\) \mbfzero mathematical bold digit 0U+1D7CF 𝟏 \(𝟏\) \(\mbfone\) \mbfone mathematical bold digit 1U+1D7D0 𝟐 \(𝟐\) \(\mbftwo\) \mbftwo mathematical bold digit 2U+1D7D1 𝟑 \(𝟑\) \(\mbfthree\) \mbfthree mathematical bold digit 3U+1D7D2 𝟒 \(𝟒\) \(\mbffour\) \mbffour mathematical bold digit 4U+1D7D3 𝟓 \(𝟓\) \(\mbffive\) \mbffive mathematical bold digit 5U+1D7D4 𝟔 \(𝟔\) \(\mbfsix\) \mbfsix mathematical bold digit 6U+1D7D5 𝟕 \(𝟕\) \(\mbfseven\) \mbfseven mathematical bold digit 7U+1D7D6 𝟖 \(𝟖\) \(\mbfeight\) \mbfeight mathematical bold digit 8U+1D7D7 𝟗 \(𝟗\) \(\mbfnine\) \mbfnine mathematical bold digit 9U+1D400 𝐀 \(𝐀\) \(\mbfA\) \mbfA mathematical bold capital aU+1D401 𝐁 \(𝐁\) \(\mbfB\) \mbfB mathematical bold capital bU+1D402 𝐂 \(𝐂\) \(\mbfC\) \mbfC mathematical bold capital cU+1D403 𝐃 \(𝐃\) \(\mbfD\) \mbfD mathematical bold capital dU+1D404 𝐄 \(𝐄\) \(\mbfE\) \mbfE mathematical bold capital eU+1D405 𝐅 \(𝐅\) \(\mbfF\) \mbfF mathematical bold capital fU+1D406 𝐆 \(𝐆\) \(\mbfG\) \mbfG mathematical bold capital gU+1D407 𝐇 \(𝐇\) \(\mbfH\) \mbfH mathematical bold capital hU+1D408 𝐈 \(𝐈\) \(\mbfI\) \mbfI mathematical bold capital iU+1D409 𝐉 \(𝐉\) \(\mbfJ\) \mbfJ mathematical bold capital jU+1D40A 𝐊 \(𝐊\) \(\mbfK\) \mbfK mathematical bold capital kU+1D40B 𝐋 \(𝐋\) \(\mbfL\) \mbfL mathematical bold capital lU+1D40C 𝐌 \(𝐌\) \(\mbfM\) \mbfM mathematical bold capital mU+1D40D 𝐍 \(𝐍\) \(\mbfN\) \mbfN mathematical bold capital nU+1D40E 𝐎 \(𝐎\) \(\mbfO\) \mbfO mathematical bold capital oU+1D40F 𝐏 \(𝐏\) \(\mbfP\) \mbfP mathematical bold capital pU+1D410 𝐐 \(𝐐\) \(\mbfQ\) \mbfQ mathematical bold capital qU+1D411 𝐑 \(𝐑\) \(\mbfR\) \mbfR mathematical bold capital rU+1D412 𝐒 \(𝐒\) \(\mbfS\) \mbfS mathematical bold capital sU+1D413 𝐓 \(𝐓\) \(\mbfT\) \mbfT mathematical bold capital tU+1D414 𝐔 \(𝐔\) \(\mbfU\) \mbfU mathematical bold capital uU+1D415 𝐕 \(𝐕\) \(\mbfV\) \mbfV mathematical bold capital vU+1D416 𝐖 \(𝐖\) \(\mbfW\) \mbfW mathematical bold capital wU+1D417 𝐗 \(𝐗\) \(\mbfX\) \mbfX mathematical bold capital xU+1D418 𝐘 \(𝐘\) \(\mbfY\) \mbfY mathematical bold capital yU+1D419 𝐙 \(𝐙\) \(\mbfZ\) \mbfZ mathematical bold capital zU+1D41A 𝐚 \(𝐚\) \(\mbfa\) \mbfa mathematical bold small aU+1D41B 𝐛 \(𝐛\) \(\mbfb\) \mbfb mathematical bold small bU+1D41C 𝐜 \(𝐜\) \(\mbfc\) \mbfc mathematical bold small cU+1D41D 𝐝 \(𝐝\) \(\mbfd\) \mbfd mathematical bold small dU+1D41E 𝐞 \(𝐞\) \(\mbfe\) \mbfe mathematical bold small eU+1D41F 𝐟 \(𝐟\) \(\mbff\) \mbff mathematical bold small fU+1D420 𝐠 \(𝐠\) \(\mbfg\) \mbfg mathematical bold small gU+1D421 𝐡 \(𝐡\) \(\mbfh\) \mbfh mathematical bold small hU+1D422 𝐢 \(𝐢\) \(\mbfi\) \mbfi mathematical bold small iU+1D423 𝐣 \(𝐣\) \(\mbfj\) \mbfj mathematical bold small jU+1D424 𝐤 \(𝐤\) \(\mbfk\) \mbfk mathematical bold small kU+1D425 𝐥 \(𝐥\) \(\mbfl\) \mbfl mathematical bold small lU+1D426 𝐦 \(𝐦\) \(\mbfm\) \mbfm mathematical bold small mU+1D427 𝐧 \(𝐧\) \(\mbfn\) \mbfn mathematical bold small nU+1D428 𝐨 \(𝐨\) \(\mbfo\) \mbfo mathematical bold small oU+1D429 𝐩 \(𝐩\) \(\mbfp\) \mbfp mathematical bold small pU+1D42A 𝐪 \(𝐪\) \(\mbfq\) \mbfq mathematical bold small qU+1D42B 𝐫 \(𝐫\) \(\mbfr\) \mbfr mathematical bold small rU+1D42C 𝐬 \(𝐬\) \(\mbfs\) \mbfs mathematical bold small sU+1D42D 𝐭 \(𝐭\) \(\mbft\) \mbft mathematical bold small tU+1D42E 𝐮 \(𝐮\) \(\mbfu\) \mbfu mathematical bold small uU+1D42F 𝐯 \(𝐯\) \(\mbfv\) \mbfv mathematical bold small vU+1D430 𝐰 \(𝐰\) \(\mbfw\) \mbfw mathematical bold small wU+1D431 𝐱 \(𝐱\) \(\mbfx\) \mbfx mathematical bold small xU+1D432 𝐲 \(𝐲\) \(\mbfy\) \mbfy mathematical bold small yU+1D433 𝐳 \(𝐳\) \(\mbfz\) \mbfz mathematical bold small zU+1D6A8 𝚨 \(𝚨\) \(\mbfAlpha\) \mbfAlpha mathematical bold capital alphaU+1D6A9 𝚩 \(𝚩\) \(\mbfBeta\) \mbfBeta mathematical bold capital betaU+1D6AA 𝚪 \(𝚪\) \(\mbfGamma\) \mbfGamma mathematical bold capital gammaU+1D6AB 𝚫 \(𝚫\) \(\mbfDelta\) \mbfDelta mathematical bold capital deltaU+1D6AC 𝚬 \(𝚬\) \(\mbfEpsilon\) \mbfEpsilon mathematical bold capital epsilonU+1D6AD 𝚭 \(𝚭\) \(\mbfZeta\) \mbfZeta mathematical bold capital zetaU+1D6AE 𝚮 \(𝚮\) \(\mbfEta\) \mbfEta mathematical bold capital etaU+1D6AF 𝚯 \(𝚯\) \(\mbfTheta\) \mbfTheta mathematical bold capital thetaU+1D6B0 𝚰 \(𝚰\) \(\mbfIota\) \mbfIota mathematical bold capital iotaU+1D6B1 𝚱 \(𝚱\) \(\mbfKappa\) \mbfKappa mathematical bold capital kappaU+1D6B2 𝚲 \(𝚲\) \(\mbfLambda\) \mbfLambda mathematical bold capital lambdaU+1D6B3 𝚳 \(𝚳\) \(\mbfMu\) \mbfMu mathematical bold capital muU+1D6B4 𝚴 \(𝚴\) \(\mbfNu\) \mbfNu mathematical bold capital nuU+1D6B5 𝚵 \(𝚵\) \(\mbfXi\) \mbfXi mathematical bold capital xiU+1D6B6 𝚶 \(𝚶\) \(\mbfOmicron\) \mbfOmicron mathematical bold capital omicronU+1D6B7 𝚷 \(𝚷\) \(\mbfPi\) \mbfPi mathematical bold capital piU+1D6B8 𝚸 \(𝚸\) \(\mbfRho\) \mbfRho mathematical bold capital rhoU+1D6B9 𝚹 \(𝚹\) \(\mbfvarTheta\) \mbfvarTheta mathematical bold capital theta symbolU+1D6BA 𝚺 \(𝚺\) \(\mbfSigma\) \mbfSigma mathematical bold capital sigmaU+1D6BB 𝚻 \(𝚻\) \(\mbfTau\) \mbfTau mathematical bold capital tauU+1D6BC 𝚼 \(𝚼\) \(\mbfUpsilon\) \mbfUpsilon mathematical bold capital upsilonU+1D6BD 𝚽 \(𝚽\) \(\mbfPhi\) \mbfPhi mathematical bold capital phiU+1D6BE 𝚾 \(𝚾\) \(\mbfChi\) \mbfChi mathematical bold capital chiU+1D6BF 𝚿 \(𝚿\) \(\mbfPsi\) \mbfPsi mathematical bold capital psiU+1D6C0 𝛀 \(𝛀\) \(\mbfOmega\) \mbfOmega mathematical bold capital omegaU+1D6C2 𝛂 \(𝛂\) \(\mbfalpha\) \mbfalpha mathematical bold small alphaU+1D6C3 𝛃 \(𝛃\) \(\mbfbeta\) \mbfbeta mathematical bold small betaU+1D6C4 𝛄 \(𝛄\) \(\mbfgamma\) \mbfgamma mathematical bold small gammaU+1D6C5 𝛅 \(𝛅\) \(\mbfdelta\) \mbfdelta mathematical bold small deltaU+1D6C6 𝛆 \(𝛆\) \(\mbfvarepsilon\) \mbfvarepsilon mathematical bold small varepsilonU+1D6C7 𝛇 \(𝛇\) \(\mbfzeta\) \mbfzeta mathematical bold small zetaU+1D6C8 𝛈 \(𝛈\) \(\mbfeta\) \mbfeta mathematical bold small etaU+1D6C9 𝛉 \(𝛉\) \(\mbftheta\) \mbftheta mathematical bold small thetaU+1D6CA 𝛊 \(𝛊\) \(\mbfiota\) \mbfiota mathematical bold small iotaU+1D6CB 𝛋 \(𝛋\) \(\mbfkappa\) \mbfkappa mathematical bold small kappaU+1D6CC 𝛌 \(𝛌\) \(\mbflambda\) \mbflambda mathematical bold small lambdaU+1D6CD 𝛍 \(𝛍\) \(\mbfmu\) \mbfmu mathematical bold small muU+1D6CE 𝛎 \(𝛎\) \(\mbfnu\) \mbfnu mathematical bold small nuU+1D6CF 𝛏 \(𝛏\) \(\mbfxi\) \mbfxi mathematical bold small xiU+1D6D0 𝛐 \(𝛐\) \(\mbfomicron\) \mbfomicron mathematical bold small omicronU+1D6D1 𝛑 \(𝛑\) \(\mbfpi\) \mbfpi mathematical bold small piU+1D6D2 𝛒 \(𝛒\) \(\mbfrho\) \mbfrho mathematical bold small rhoU+1D6D3 𝛓 \(𝛓\) \(\mbfvarsigma\) \mbfvarsigma mathematical bold small final sigmaU+1D6D4 𝛔 \(𝛔\) \(\mbfsigma\) \mbfsigma mathematical bold small sigmaU+1D6D5 𝛕 \(𝛕\) \(\mbftau\) \mbftau mathematical bold small tauU+1D6D6 𝛖 \(𝛖\) \(\mbfupsilon\) \mbfupsilon mathematical bold small upsilonU+1D6D7 𝛗 \(𝛗\) \(\mbfvarphi\) \mbfvarphi mathematical bold small phiU+1D6D8 𝛘 \(𝛘\) \(\mbfchi\) \mbfchi mathematical bold small chiU+1D6D9 𝛙 \(𝛙\) \(\mbfpsi\) \mbfpsi mathematical bold small psiU+1D6DA 𝛚 \(𝛚\) \(\mbfomega\) \mbfomega mathematical bold small omegaU+1D6DB 𝛛 \(𝛛\) \(\mbfpartial\) \mbfpartial mathematical bold partial differentialU+1D6DC 𝛜 \(𝛜\) \(\mbfepsilon\) \mbfepsilon mathematical bold varepsilon symbolU+1D6DD 𝛝 \(𝛝\) \(\mbfvartheta\) \mbfvartheta mathematical bold theta symbolU+1D6DE 𝛞 \(𝛞\) \(\mbfvarkappa\) \mbfvarkappa mathematical bold kappa symbolU+1D6DF 𝛟 \(𝛟\) \(\mbfphi\) \mbfphi mathematical bold phi symbolU+1D6E0 𝛠 \(𝛠\) \(\mbfvarrho\) \mbfvarrho mathematical bold rho symbolU+1D6E1 𝛡 \(𝛡\) \(\mbfvarpi\) \mbfvarpi mathematical bold pi symbolU+1D468 𝑨 \(𝑨\) \(\mbfitA\) \mbfitA mathematical bold italic capital aU+1D469 𝑩 \(𝑩\) \(\mbfitB\) \mbfitB mathematical bold italic capital bU+1D46A 𝑪 \(𝑪\) \(\mbfitC\) \mbfitC mathematical bold italic capital cU+1D46B 𝑫 \(𝑫\) \(\mbfitD\) \mbfitD mathematical bold italic capital dU+1D46C 𝑬 \(𝑬\) \(\mbfitE\) \mbfitE mathematical bold italic capital eU+1D46D 𝑭 \(𝑭\) \(\mbfitF\) \mbfitF mathematical bold italic capital fU+1D46E 𝑮 \(𝑮\) \(\mbfitG\) \mbfitG mathematical bold italic capital gU+1D46F 𝑯 \(𝑯\) \(\mbfitH\) \mbfitH mathematical bold italic capital hU+1D470 𝑰 \(𝑰\) \(\mbfitI\) \mbfitI mathematical bold italic capital iU+1D471 𝑱 \(𝑱\) \(\mbfitJ\) \mbfitJ mathematical bold italic capital jU+1D472 𝑲 \(𝑲\) \(\mbfitK\) \mbfitK mathematical bold italic capital kU+1D473 𝑳 \(𝑳\) \(\mbfitL\) \mbfitL mathematical bold italic capital lU+1D474 𝑴 \(𝑴\) \(\mbfitM\) \mbfitM mathematical bold italic capital mU+1D475 𝑵 \(𝑵\) \(\mbfitN\) \mbfitN mathematical bold italic capital nU+1D476 𝑶 \(𝑶\) \(\mbfitO\) \mbfitO mathematical bold italic capital oU+1D477 𝑷 \(𝑷\) \(\mbfitP\) \mbfitP mathematical bold italic capital pU+1D478 𝑸 \(𝑸\) \(\mbfitQ\) \mbfitQ mathematical bold italic capital qU+1D479 𝑹 \(𝑹\) \(\mbfitR\) \mbfitR mathematical bold italic capital rU+1D47A 𝑺 \(𝑺\) \(\mbfitS\) \mbfitS mathematical bold italic capital sU+1D47B 𝑻 \(𝑻\) \(\mbfitT\) \mbfitT mathematical bold italic capital tU+1D47C 𝑼 \(𝑼\) \(\mbfitU\) \mbfitU mathematical bold italic capital uU+1D47D 𝑽 \(𝑽\) \(\mbfitV\) \mbfitV mathematical bold italic capital vU+1D47E 𝑾 \(𝑾\) \(\mbfitW\) \mbfitW mathematical bold italic capital wU+1D47F 𝑿 \(𝑿\) \(\mbfitX\) \mbfitX mathematical bold italic capital xU+1D480 𝒀 \(𝒀\) \(\mbfitY\) \mbfitY mathematical bold italic capital yU+1D481 𝒁 \(𝒁\) \(\mbfitZ\) \mbfitZ mathematical bold italic capital zU+1D482 𝒂 \(𝒂\) \(\mbfita\) \mbfita mathematical bold italic small aU+1D483 𝒃 \(𝒃\) \(\mbfitb\) \mbfitb mathematical bold italic small bU+1D484 𝒄 \(𝒄\) \(\mbfitc\) \mbfitc mathematical bold italic small cU+1D485 𝒅 \(𝒅\) \(\mbfitd\) \mbfitd mathematical bold italic small dU+1D486 𝒆 \(𝒆\) \(\mbfite\) \mbfite mathematical bold italic small eU+1D487 𝒇 \(𝒇\) \(\mbfitf\) \mbfitf mathematical bold italic small fU+1D488 𝒈 \(𝒈\) \(\mbfitg\) \mbfitg mathematical bold italic small gU+1D489 𝒉 \(𝒉\) \(\mbfith\) \mbfith mathematical bold italic small hU+1D48A 𝒊 \(𝒊\) \(\mbfiti\) \mbfiti mathematical bold italic small iU+1D48B 𝒋 \(𝒋\) \(\mbfitj\) \mbfitj mathematical bold italic small jU+1D48C 𝒌 \(𝒌\) \(\mbfitk\) \mbfitk mathematical bold italic small kU+1D48D 𝒍 \(𝒍\) \(\mbfitl\) \mbfitl mathematical bold italic small lU+1D48E 𝒎 \(𝒎\) \(\mbfitm\) \mbfitm mathematical bold italic small mU+1D48F 𝒏 \(𝒏\) \(\mbfitn\) \mbfitn mathematical bold italic small nU+1D490 𝒐 \(𝒐\) \(\mbfito\) \mbfito mathematical bold italic small oU+1D491 𝒑 \(𝒑\) \(\mbfitp\) \mbfitp mathematical bold italic small pU+1D492 𝒒 \(𝒒\) \(\mbfitq\) \mbfitq mathematical bold italic small qU+1D493 𝒓 \(𝒓\) \(\mbfitr\) \mbfitr mathematical bold italic small rU+1D494 𝒔 \(𝒔\) \(\mbfits\) \mbfits mathematical bold italic small sU+1D495 𝒕 \(𝒕\) \(\mbfitt\) \mbfitt mathematical bold italic small tU+1D496 𝒖 \(𝒖\) \(\mbfitu\) \mbfitu mathematical bold italic small uU+1D497 𝒗 \(𝒗\) \(\mbfitv\) \mbfitv mathematical bold italic small vU+1D498 𝒘 \(𝒘\) \(\mbfitw\) \mbfitw mathematical bold italic small wU+1D499 𝒙 \(𝒙\) \(\mbfitx\) \mbfitx mathematical bold italic small xU+1D49A 𝒚 \(𝒚\) \(\mbfity\) \mbfity mathematical bold italic small yU+1D49B 𝒛 \(𝒛\) \(\mbfitz\) \mbfitz mathematical bold italic small zU+1D71C 𝜜 \(𝜜\) \(\mbfitAlpha\) \mbfitAlpha mathematical bold italic capital alphaU+1D71D 𝜝 \(𝜝\) \(\mbfitBeta\) \mbfitBeta mathematical bold italic capital betaU+1D71E 𝜞 \(𝜞\) \(\mbfitGamma\) \mbfitGamma mathematical bold italic capital gammaU+1D71F 𝜟 \(𝜟\) \(\mbfitDelta\) \mbfitDelta mathematical bold italic capital deltaU+1D720 𝜠 \(𝜠\) \(\mbfitEpsilon\) \mbfitEpsilon mathematical bold italic capital epsilonU+1D721 𝜡 \(𝜡\) \(\mbfitZeta\) \mbfitZeta mathematical bold italic capital zetaU+1D722 𝜢 \(𝜢\) \(\mbfitEta\) \mbfitEta mathematical bold italic capital etaU+1D723 𝜣 \(𝜣\) \(\mbfitTheta\) \mbfitTheta mathematical bold italic capital thetaU+1D724 𝜤 \(𝜤\) \(\mbfitIota\) \mbfitIota mathematical bold italic capital iotaU+1D725 𝜥 \(𝜥\) \(\mbfitKappa\) \mbfitKappa mathematical bold italic capital kappaU+1D726 𝜦 \(𝜦\) \(\mbfitLambda\) \mbfitLambda mathematical bold italic capital lambdaU+1D727 𝜧 \(𝜧\) \(\mbfitMu\) \mbfitMu mathematical bold italic capital muU+1D728 𝜨 \(𝜨\) \(\mbfitNu\) \mbfitNu mathematical bold italic capital nuU+1D729 𝜩 \(𝜩\) \(\mbfitXi\) \mbfitXi mathematical bold italic capital xiU+1D72A 𝜪 \(𝜪\) \(\mbfitOmicron\) \mbfitOmicron mathematical bold italic capital omicronU+1D72B 𝜫 \(𝜫\) \(\mbfitPi\) \mbfitPi mathematical bold italic capital piU+1D72C 𝜬 \(𝜬\) \(\mbfitRho\) \mbfitRho mathematical bold italic capital rhoU+1D72D 𝜭 \(𝜭\) \(\mbfitvarTheta\) \mbfitvarTheta mathematical bold italic capital theta symbolU+1D72E 𝜮 \(𝜮\) \(\mbfitSigma\) \mbfitSigma mathematical bold italic capital sigmaU+1D72F 𝜯 \(𝜯\) \(\mbfitTau\) \mbfitTau mathematical bold italic capital tauU+1D730 𝜰 \(𝜰\) \(\mbfitUpsilon\) \mbfitUpsilon mathematical bold italic capital upsilonU+1D731 𝜱 \(𝜱\) \(\mbfitPhi\) \mbfitPhi mathematical bold italic capital phiU+1D732 𝜲 \(𝜲\) \(\mbfitChi\) \mbfitChi mathematical bold italic capital chiU+1D733 𝜳 \(𝜳\) \(\mbfitPsi\) \mbfitPsi mathematical bold italic capital psiU+1D734 𝜴 \(𝜴\) \(\mbfitOmega\) \mbfitOmega mathematical bold italic capital omegaU+1D736 𝜶 \(𝜶\) \(\mbfitalpha\) \mbfitalpha mathematical bold italic small alphaU+1D737 𝜷 \(𝜷\) \(\mbfitbeta\) \mbfitbeta mathematical bold italic small betaU+1D738 𝜸 \(𝜸\) \(\mbfitgamma\) \mbfitgamma mathematical bold italic small gammaU+1D739 𝜹 \(𝜹\) \(\mbfitdelta\) \mbfitdelta mathematical bold italic small deltaU+1D73A 𝜺 \(𝜺\) \(\mbfitvarepsilon\) \mbfitvarepsilon mathematical bold italic small varepsilonU+1D73B 𝜻 \(𝜻\) \(\mbfitzeta\) \mbfitzeta mathematical bold italic small zetaU+1D73C 𝜼 \(𝜼\) \(\mbfiteta\) \mbfiteta mathematical bold italic small etaU+1D73D 𝜽 \(𝜽\) \(\mbfittheta\) \mbfittheta mathematical bold italic small thetaU+1D73E 𝜾 \(𝜾\) \(\mbfitiota\) \mbfitiota mathematical bold italic small iotaU+1D73F 𝜿 \(𝜿\) \(\mbfitkappa\) \mbfitkappa mathematical bold italic small kappaU+1D740 𝝀 \(𝝀\) \(\mbfitlambda\) \mbfitlambda mathematical bold italic small lambdaU+1D741 𝝁 \(𝝁\) \(\mbfitmu\) \mbfitmu mathematical bold italic small muU+1D742 𝝂 \(𝝂\) \(\mbfitnu\) \mbfitnu mathematical bold italic small nuU+1D743 𝝃 \(𝝃\) \(\mbfitxi\) \mbfitxi mathematical bold italic small xiU+1D744 𝝄 \(𝝄\) \(\mbfitomicron\) \mbfitomicron mathematical bold italic small omicronU+1D745 𝝅 \(𝝅\) \(\mbfitpi\) \mbfitpi mathematical bold italic small piU+1D746 𝝆 \(𝝆\) \(\mbfitrho\) \mbfitrho mathematical bold italic small rhoU+1D747 𝝇 \(𝝇\) \(\mbfitvarsigma\) \mbfitvarsigma mathematical bold italic small final sigmaU+1D748 𝝈 \(𝝈\) \(\mbfitsigma\) \mbfitsigma mathematical bold italic small sigmaU+1D749 𝝉 \(𝝉\) \(\mbfittau\) \mbfittau mathematical bold italic small tauU+1D74A 𝝊 \(𝝊\) \(\mbfitupsilon\) \mbfitupsilon mathematical bold italic small upsilonU+1D74B 𝝋 \(𝝋\) \(\mbfitvarphi\) \mbfitvarphi mathematical bold italic small phiU+1D74C 𝝌 \(𝝌\) \(\mbfitchi\) \mbfitchi mathematical bold italic small chiU+1D74D 𝝍 \(𝝍\) \(\mbfitpsi\) \mbfitpsi mathematical bold italic small psiU+1D74E 𝝎 \(𝝎\) \(\mbfitomega\) \mbfitomega mathematical bold italic small omegaU+1D74F 𝝏 \(𝝏\) \(\mbfitpartial\) \mbfitpartial mathematical bold italic partial differentialU+1D750 𝝐 \(𝝐\) \(\mbfitepsilon\) \mbfitepsilon mathematical bold italic varepsilon symbolU+1D751 𝝑 \(𝝑\) \(\mbfitvartheta\) \mbfitvartheta mathematical bold italic theta symbolU+1D752 𝝒 \(𝝒\) \(\mbfitvarkappa\) \mbfitvarkappa mathematical bold italic kappa symbolU+1D753 𝝓 \(𝝓\) \(\mbfitphi\) \mbfitphi mathematical bold italic phi symbolU+1D754 𝝔 \(𝝔\) \(\mbfitvarrho\) \mbfitvarrho mathematical bold italic rho symbolU+1D755 𝝕 \(𝝕\) \(\mbfitvarpi\) \mbfitvarpi mathematical bold italic pi symbolU+1D4D0 𝓐 \(𝓐\) \(\mbfscrA\) \mbfscrA mathematical bold script capital aU+1D4D1 𝓑 \(𝓑\) \(\mbfscrB\) \mbfscrB mathematical bold script capital bU+1D4D2 𝓒 \(𝓒\) \(\mbfscrC\) \mbfscrC mathematical bold script capital cU+1D4D3 𝓓 \(𝓓\) \(\mbfscrD\) \mbfscrD mathematical bold script capital dU+1D4D4 𝓔 \(𝓔\) \(\mbfscrE\) \mbfscrE mathematical bold script capital eU+1D4D5 𝓕 \(𝓕\) \(\mbfscrF\) \mbfscrF mathematical bold script capital fU+1D4D6 𝓖 \(𝓖\) \(\mbfscrG\) \mbfscrG mathematical bold script capital gU+1D4D7 𝓗 \(𝓗\) \(\mbfscrH\) \mbfscrH mathematical bold script capital hU+1D4D8 𝓘 \(𝓘\) \(\mbfscrI\) \mbfscrI mathematical bold script capital iU+1D4D9 𝓙 \(𝓙\) \(\mbfscrJ\) \mbfscrJ mathematical bold script capital jU+1D4DA 𝓚 \(𝓚\) \(\mbfscrK\) \mbfscrK mathematical bold script capital kU+1D4DB 𝓛 \(𝓛\) \(\mbfscrL\) \mbfscrL mathematical bold script capital lU+1D4DC 𝓜 \(𝓜\) \(\mbfscrM\) \mbfscrM mathematical bold script capital mU+1D4DD 𝓝 \(𝓝\) \(\mbfscrN\) \mbfscrN mathematical bold script capital nU+1D4DE 𝓞 \(𝓞\) \(\mbfscrO\) \mbfscrO mathematical bold script capital oU+1D4DF 𝓟 \(𝓟\) \(\mbfscrP\) \mbfscrP mathematical bold script capital pU+1D4E0 𝓠 \(𝓠\) \(\mbfscrQ\) \mbfscrQ mathematical bold script capital qU+1D4E1 𝓡 \(𝓡\) \(\mbfscrR\) \mbfscrR mathematical bold script capital rU+1D4E2 𝓢 \(𝓢\) \(\mbfscrS\) \mbfscrS mathematical bold script capital sU+1D4E3 𝓣 \(𝓣\) \(\mbfscrT\) \mbfscrT mathematical bold script capital tU+1D4E4 𝓤 \(𝓤\) \(\mbfscrU\) \mbfscrU mathematical bold script capital uU+1D4E5 𝓥 \(𝓥\) \(\mbfscrV\) \mbfscrV mathematical bold script capital vU+1D4E6 𝓦 \(𝓦\) \(\mbfscrW\) \mbfscrW mathematical bold script capital wU+1D4E7 𝓧 \(𝓧\) \(\mbfscrX\) \mbfscrX mathematical bold script capital xU+1D4E8 𝓨 \(𝓨\) \(\mbfscrY\) \mbfscrY mathematical bold script capital yU+1D4E9 𝓩 \(𝓩\) \(\mbfscrZ\) \mbfscrZ mathematical bold script capital zU+1D4EA 𝓪 \(𝓪\) \(\mbfscra\) \mbfscra mathematical bold script small aU+1D4EB 𝓫 \(𝓫\) \(\mbfscrb\) \mbfscrb mathematical bold script small bU+1D4EC 𝓬 \(𝓬\) \(\mbfscrc\) \mbfscrc mathematical bold script small cU+1D4ED 𝓭 \(𝓭\) \(\mbfscrd\) \mbfscrd mathematical bold script small dU+1D4EE 𝓮 \(𝓮\) \(\mbfscre\) \mbfscre mathematical bold script small eU+1D4EF 𝓯 \(𝓯\) \(\mbfscrf\) \mbfscrf mathematical bold script small fU+1D4F0 𝓰 \(𝓰\) \(\mbfscrg\) \mbfscrg mathematical bold script small gU+1D4F1 𝓱 \(𝓱\) \(\mbfscrh\) \mbfscrh mathematical bold script small hU+1D4F2 𝓲 \(𝓲\) \(\mbfscri\) \mbfscri mathematical bold script small iU+1D4F3 𝓳 \(𝓳\) \(\mbfscrj\) \mbfscrj mathematical bold script small jU+1D4F4 𝓴 \(𝓴\) \(\mbfscrk\) \mbfscrk mathematical bold script small kU+1D4F5 𝓵 \(𝓵\) \(\mbfscrl\) \mbfscrl mathematical bold script small lU+1D4F6 𝓶 \(𝓶\) \(\mbfscrm\) \mbfscrm mathematical bold script small mU+1D4F7 𝓷 \(𝓷\) \(\mbfscrn\) \mbfscrn mathematical bold script small nU+1D4F8 𝓸 \(𝓸\) \(\mbfscro\) \mbfscro mathematical bold script small oU+1D4F9 𝓹 \(𝓹\) \(\mbfscrp\) \mbfscrp mathematical bold script small pU+1D4FA 𝓺 \(𝓺\) \(\mbfscrq\) \mbfscrq mathematical bold script small qU+1D4FB 𝓻 \(𝓻\) \(\mbfscrr\) \mbfscrr mathematical bold script small rU+1D4FC 𝓼 \(𝓼\) \(\mbfscrs\) \mbfscrs mathematical bold script small sU+1D4FD 𝓽 \(𝓽\) \(\mbfscrt\) \mbfscrt mathematical bold script small tU+1D4FE 𝓾 \(𝓾\) \(\mbfscru\) \mbfscru mathematical bold script small uU+1D4FF 𝓿 \(𝓿\) \(\mbfscrv\) \mbfscrv mathematical bold script small vU+1D500 𝔀 \(𝔀\) \(\mbfscrw\) \mbfscrw mathematical bold script small wU+1D501 𝔁 \(𝔁\) \(\mbfscrx\) \mbfscrx mathematical bold script small xU+1D502 𝔂 \(𝔂\) \(\mbfscry\) \mbfscry mathematical bold script small yU+1D503 𝔃 \(𝔃\) \(\mbfscrz\) \mbfscrz mathematical bold script small zU+1D56C 𝕬 \(𝕬\) \(\mbffrakA\) \mbffrakA mathematical bold fraktur capital aU+1D56D 𝕭 \(𝕭\) \(\mbffrakB\) \mbffrakB mathematical bold fraktur capital bU+1D56E 𝕮 \(𝕮\) \(\mbffrakC\) \mbffrakC mathematical bold fraktur capital cU+1D56F 𝕯 \(𝕯\) \(\mbffrakD\) \mbffrakD mathematical bold fraktur capital dU+1D570 𝕰 \(𝕰\) \(\mbffrakE\) \mbffrakE mathematical bold fraktur capital eU+1D571 𝕱 \(𝕱\) \(\mbffrakF\) \mbffrakF mathematical bold fraktur capital fU+1D572 𝕲 \(𝕲\) \(\mbffrakG\) \mbffrakG mathematical bold fraktur capital gU+1D573 𝕳 \(𝕳\) \(\mbffrakH\) \mbffrakH mathematical bold fraktur capital hU+1D574 𝕴 \(𝕴\) \(\mbffrakI\) \mbffrakI mathematical bold fraktur capital iU+1D575 𝕵 \(𝕵\) \(\mbffrakJ\) \mbffrakJ mathematical bold fraktur capital jU+1D576 𝕶 \(𝕶\) \(\mbffrakK\) \mbffrakK mathematical bold fraktur capital kU+1D577 𝕷 \(𝕷\) \(\mbffrakL\) \mbffrakL mathematical bold fraktur capital lU+1D578 𝕸 \(𝕸\) \(\mbffrakM\) \mbffrakM mathematical bold fraktur capital mU+1D579 𝕹 \(𝕹\) \(\mbffrakN\) \mbffrakN mathematical bold fraktur capital nU+1D57A 𝕺 \(𝕺\) \(\mbffrakO\) \mbffrakO mathematical bold fraktur capital oU+1D57B 𝕻 \(𝕻\) \(\mbffrakP\) \mbffrakP mathematical bold fraktur capital pU+1D57C 𝕼 \(𝕼\) \(\mbffrakQ\) \mbffrakQ mathematical bold fraktur capital qU+1D57D 𝕽 \(𝕽\) \(\mbffrakR\) \mbffrakR mathematical bold fraktur capital rU+1D57E 𝕾 \(𝕾\) \(\mbffrakS\) \mbffrakS mathematical bold fraktur capital sU+1D57F 𝕿 \(𝕿\) \(\mbffrakT\) \mbffrakT mathematical bold fraktur capital tU+1D580 𝖀 \(𝖀\) \(\mbffrakU\) \mbffrakU mathematical bold fraktur capital uU+1D581 𝖁 \(𝖁\) \(\mbffrakV\) \mbffrakV mathematical bold fraktur capital vU+1D582 𝖂 \(𝖂\) \(\mbffrakW\) \mbffrakW mathematical bold fraktur capital wU+1D583 𝖃 \(𝖃\) \(\mbffrakX\) \mbffrakX mathematical bold fraktur capital xU+1D584 𝖄 \(𝖄\) \(\mbffrakY\) \mbffrakY mathematical bold fraktur capital yU+1D585 𝖅 \(𝖅\) \(\mbffrakZ\) \mbffrakZ mathematical bold fraktur capital zU+1D586 𝖆 \(𝖆\) \(\mbffraka\) \mbffraka mathematical bold fraktur small aU+1D587 𝖇 \(𝖇\) \(\mbffrakb\) \mbffrakb mathematical bold fraktur small bU+1D588 𝖈 \(𝖈\) \(\mbffrakc\) \mbffrakc mathematical bold fraktur small cU+1D589 𝖉 \(𝖉\) \(\mbffrakd\) \mbffrakd mathematical bold fraktur small dU+1D58A 𝖊 \(𝖊\) \(\mbffrake\) \mbffrake mathematical bold fraktur small eU+1D58B 𝖋 \(𝖋\) \(\mbffrakf\) \mbffrakf mathematical bold fraktur small fU+1D58C 𝖌 \(𝖌\) \(\mbffrakg\) \mbffrakg mathematical bold fraktur small gU+1D58D 𝖍 \(𝖍\) \(\mbffrakh\) \mbffrakh mathematical bold fraktur small hU+1D58E 𝖎 \(𝖎\) \(\mbffraki\) \mbffraki mathematical bold fraktur small iU+1D58F 𝖏 \(𝖏\) \(\mbffrakj\) \mbffrakj mathematical bold fraktur small jU+1D590 𝖐 \(𝖐\) \(\mbffrakk\) \mbffrakk mathematical bold fraktur small kU+1D591 𝖑 \(𝖑\) \(\mbffrakl\) \mbffrakl mathematical bold fraktur small lU+1D592 𝖒 \(𝖒\) \(\mbffrakm\) \mbffrakm mathematical bold fraktur small mU+1D593 𝖓 \(𝖓\) \(\mbffrakn\) \mbffrakn mathematical bold fraktur small nU+1D594 𝖔 \(𝖔\) \(\mbffrako\) \mbffrako mathematical bold fraktur small oU+1D595 𝖕 \(𝖕\) \(\mbffrakp\) \mbffrakp mathematical bold fraktur small pU+1D596 𝖖 \(𝖖\) \(\mbffrakq\) \mbffrakq mathematical bold fraktur small qU+1D597 𝖗 \(𝖗\) \(\mbffrakr\) \mbffrakr mathematical bold fraktur small rU+1D598 𝖘 \(𝖘\) \(\mbffraks\) \mbffraks mathematical bold fraktur small sU+1D599 𝖙 \(𝖙\) \(\mbffrakt\) \mbffrakt mathematical bold fraktur small tU+1D59A 𝖚 \(𝖚\) \(\mbffraku\) \mbffraku mathematical bold fraktur small uU+1D59B 𝖛 \(𝖛\) \(\mbffrakv\) \mbffrakv mathematical bold fraktur small vU+1D59C 𝖜 \(𝖜\) \(\mbffrakw\) \mbffrakw mathematical bold fraktur small wU+1D59D 𝖝 \(𝖝\) \(\mbffrakx\) \mbffrakx mathematical bold fraktur small xU+1D59E 𝖞 \(𝖞\) \(\mbffraky\) \mbffraky mathematical bold fraktur small yU+1D59F 𝖟 \(𝖟\) \(\mbffrakz\) \mbffrakz mathematical bold fraktur small zU+1D7EC 𝟬 \(𝟬\) \(\mbfsanszero\) \mbfsanszero mathematical sans-serif bold digit 0U+1D7ED 𝟭 \(𝟭\) \(\mbfsansone\) \mbfsansone mathematical sans-serif bold digit 1U+1D7EE 𝟮 \(𝟮\) \(\mbfsanstwo\) \mbfsanstwo mathematical sans-serif bold digit 2U+1D7EF 𝟯 \(𝟯\) \(\mbfsansthree\) \mbfsansthree mathematical sans-serif bold digit 3U+1D7F0 𝟰 \(𝟰\) \(\mbfsansfour\) \mbfsansfour mathematical sans-serif bold digit 4U+1D7F1 𝟱 \(𝟱\) \(\mbfsansfive\) \mbfsansfive mathematical sans-serif bold digit 5U+1D7F2 𝟲 \(𝟲\) \(\mbfsanssix\) \mbfsanssix mathematical sans-serif bold digit 6U+1D7F3 𝟳 \(𝟳\) \(\mbfsansseven\) \mbfsansseven mathematical sans-serif bold digit 7U+1D7F4 𝟴 \(𝟴\) \(\mbfsanseight\) \mbfsanseight mathematical sans-serif bold digit 8U+1D7F5 𝟵 \(𝟵\) \(\mbfsansnine\) \mbfsansnine mathematical sans-serif bold digit 9U+1D5D4 𝗔 \(𝗔\) \(\mbfsansA\) \mbfsansA mathematical sans-serif bold capital aU+1D5D5 𝗕 \(𝗕\) \(\mbfsansB\) \mbfsansB mathematical sans-serif bold capital bU+1D5D6 𝗖 \(𝗖\) \(\mbfsansC\) \mbfsansC mathematical sans-serif bold capital cU+1D5D7 𝗗 \(𝗗\) \(\mbfsansD\) \mbfsansD mathematical sans-serif bold capital dU+1D5D8 𝗘 \(𝗘\) \(\mbfsansE\) \mbfsansE mathematical sans-serif bold capital eU+1D5D9 𝗙 \(𝗙\) \(\mbfsansF\) \mbfsansF mathematical sans-serif bold capital fU+1D5DA 𝗚 \(𝗚\) \(\mbfsansG\) \mbfsansG mathematical sans-serif bold capital gU+1D5DB 𝗛 \(𝗛\) \(\mbfsansH\) \mbfsansH mathematical sans-serif bold capital hU+1D5DC 𝗜 \(𝗜\) \(\mbfsansI\) \mbfsansI mathematical sans-serif bold capital iU+1D5DD 𝗝 \(𝗝\) \(\mbfsansJ\) \mbfsansJ mathematical sans-serif bold capital jU+1D5DE 𝗞 \(𝗞\) \(\mbfsansK\) \mbfsansK mathematical sans-serif bold capital kU+1D5DF 𝗟 \(𝗟\) \(\mbfsansL\) \mbfsansL mathematical sans-serif bold capital lU+1D5E0 𝗠 \(𝗠\) \(\mbfsansM\) \mbfsansM mathematical sans-serif bold capital mU+1D5E1 𝗡 \(𝗡\) \(\mbfsansN\) \mbfsansN mathematical sans-serif bold capital nU+1D5E2 𝗢 \(𝗢\) \(\mbfsansO\) \mbfsansO mathematical sans-serif bold capital oU+1D5E3 𝗣 \(𝗣\) \(\mbfsansP\) \mbfsansP mathematical sans-serif bold capital pU+1D5E4 𝗤 \(𝗤\) \(\mbfsansQ\) \mbfsansQ mathematical sans-serif bold capital qU+1D5E5 𝗥 \(𝗥\) \(\mbfsansR\) \mbfsansR mathematical sans-serif bold capital rU+1D5E6 𝗦 \(𝗦\) \(\mbfsansS\) \mbfsansS mathematical sans-serif bold capital sU+1D5E7 𝗧 \(𝗧\) \(\mbfsansT\) \mbfsansT mathematical sans-serif bold capital tU+1D5E8 𝗨 \(𝗨\) \(\mbfsansU\) \mbfsansU mathematical sans-serif bold capital uU+1D5E9 𝗩 \(𝗩\) \(\mbfsansV\) \mbfsansV mathematical sans-serif bold capital vU+1D5EA 𝗪 \(𝗪\) \(\mbfsansW\) \mbfsansW mathematical sans-serif bold capital wU+1D5EB 𝗫 \(𝗫\) \(\mbfsansX\) \mbfsansX mathematical sans-serif bold capital xU+1D5EC 𝗬 \(𝗬\) \(\mbfsansY\) \mbfsansY mathematical sans-serif bold capital yU+1D5ED 𝗭 \(𝗭\) \(\mbfsansZ\) \mbfsansZ mathematical sans-serif bold capital zU+1D5EE 𝗮 \(𝗮\) \(\mbfsansa\) \mbfsansa mathematical sans-serif bold small aU+1D5EF 𝗯 \(𝗯\) \(\mbfsansb\) \mbfsansb mathematical sans-serif bold small bU+1D5F0 𝗰 \(𝗰\) \(\mbfsansc\) \mbfsansc mathematical sans-serif bold small cU+1D5F1 𝗱 \(𝗱\) \(\mbfsansd\) \mbfsansd mathematical sans-serif bold small dU+1D5F2 𝗲 \(𝗲\) \(\mbfsanse\) \mbfsanse mathematical sans-serif bold small eU+1D5F3 𝗳 \(𝗳\) \(\mbfsansf\) \mbfsansf mathematical sans-serif bold small fU+1D5F4 𝗴 \(𝗴\) \(\mbfsansg\) \mbfsansg mathematical sans-serif bold small gU+1D5F5 𝗵 \(𝗵\) \(\mbfsansh\) \mbfsansh mathematical sans-serif bold small hU+1D5F6 𝗶 \(𝗶\) \(\mbfsansi\) \mbfsansi mathematical sans-serif bold small iU+1D5F7 𝗷 \(𝗷\) \(\mbfsansj\) \mbfsansj mathematical sans-serif bold small jU+1D5F8 𝗸 \(𝗸\) \(\mbfsansk\) \mbfsansk mathematical sans-serif bold small kU+1D5F9 𝗹 \(𝗹\) \(\mbfsansl\) \mbfsansl mathematical sans-serif bold small lU+1D5FA 𝗺 \(𝗺\) \(\mbfsansm\) \mbfsansm mathematical sans-serif bold small mU+1D5FB 𝗻 \(𝗻\) \(\mbfsansn\) \mbfsansn mathematical sans-serif bold small nU+1D5FC 𝗼 \(𝗼\) \(\mbfsanso\) \mbfsanso mathematical sans-serif bold small oU+1D5FD 𝗽 \(𝗽\) \(\mbfsansp\) \mbfsansp mathematical sans-serif bold small pU+1D5FE 𝗾 \(𝗾\) \(\mbfsansq\) \mbfsansq mathematical sans-serif bold small qU+1D5FF 𝗿 \(𝗿\) \(\mbfsansr\) \mbfsansr mathematical sans-serif bold small rU+1D600 𝘀 \(𝘀\) \(\mbfsanss\) \mbfsanss mathematical sans-serif bold small sU+1D601 𝘁 \(𝘁\) \(\mbfsanst\) \mbfsanst mathematical sans-serif bold small tU+1D602 𝘂 \(𝘂\) \(\mbfsansu\) \mbfsansu mathematical sans-serif bold small uU+1D603 𝘃 \(𝘃\) \(\mbfsansv\) \mbfsansv mathematical sans-serif bold small vU+1D604 𝘄 \(𝘄\) \(\mbfsansw\) \mbfsansw mathematical sans-serif bold small wU+1D605 𝘅 \(𝘅\) \(\mbfsansx\) \mbfsansx mathematical sans-serif bold small xU+1D606 𝘆 \(𝘆\) \(\mbfsansy\) \mbfsansy mathematical sans-serif bold small yU+1D607 𝘇 \(𝘇\) \(\mbfsansz\) \mbfsansz mathematical sans-serif bold small zU+1D63C 𝘼 \(𝘼\) \(\mbfitsansA\) \mbfitsansA mathematical sans-serif bold italic capital aU+1D63D 𝘽 \(𝘽\) \(\mbfitsansB\) \mbfitsansB mathematical sans-serif bold italic capital bU+1D63E 𝘾 \(𝘾\) \(\mbfitsansC\) \mbfitsansC mathematical sans-serif bold italic capital cU+1D63F 𝘿 \(𝘿\) \(\mbfitsansD\) \mbfitsansD mathematical sans-serif bold italic capital dU+1D640 𝙀 \(𝙀\) \(\mbfitsansE\) \mbfitsansE mathematical sans-serif bold italic capital eU+1D641 𝙁 \(𝙁\) \(\mbfitsansF\) \mbfitsansF mathematical sans-serif bold italic capital fU+1D642 𝙂 \(𝙂\) \(\mbfitsansG\) \mbfitsansG mathematical sans-serif bold italic capital gU+1D643 𝙃 \(𝙃\) \(\mbfitsansH\) \mbfitsansH mathematical sans-serif bold italic capital hU+1D644 𝙄 \(𝙄\) \(\mbfitsansI\) \mbfitsansI mathematical sans-serif bold italic capital iU+1D645 𝙅 \(𝙅\) \(\mbfitsansJ\) \mbfitsansJ mathematical sans-serif bold italic capital jU+1D646 𝙆 \(𝙆\) \(\mbfitsansK\) \mbfitsansK mathematical sans-serif bold italic capital kU+1D647 𝙇 \(𝙇\) \(\mbfitsansL\) \mbfitsansL mathematical sans-serif bold italic capital lU+1D648 𝙈 \(𝙈\) \(\mbfitsansM\) \mbfitsansM mathematical sans-serif bold italic capital mU+1D649 𝙉 \(𝙉\) \(\mbfitsansN\) \mbfitsansN mathematical sans-serif bold italic capital nU+1D64A 𝙊 \(𝙊\) \(\mbfitsansO\) \mbfitsansO mathematical sans-serif bold italic capital oU+1D64B 𝙋 \(𝙋\) \(\mbfitsansP\) \mbfitsansP mathematical sans-serif bold italic capital pU+1D64C 𝙌 \(𝙌\) \(\mbfitsansQ\) \mbfitsansQ mathematical sans-serif bold italic capital qU+1D64D 𝙍 \(𝙍\) \(\mbfitsansR\) \mbfitsansR mathematical sans-serif bold italic capital rU+1D64E 𝙎 \(𝙎\) \(\mbfitsansS\) \mbfitsansS mathematical sans-serif bold italic capital sU+1D64F 𝙏 \(𝙏\) \(\mbfitsansT\) \mbfitsansT mathematical sans-serif bold italic capital tU+1D650 𝙐 \(𝙐\) \(\mbfitsansU\) \mbfitsansU mathematical sans-serif bold italic capital uU+1D651 𝙑 \(𝙑\) \(\mbfitsansV\) \mbfitsansV mathematical sans-serif bold italic capital vU+1D652 𝙒 \(𝙒\) \(\mbfitsansW\) \mbfitsansW mathematical sans-serif bold italic capital wU+1D653 𝙓 \(𝙓\) \(\mbfitsansX\) \mbfitsansX mathematical sans-serif bold italic capital xU+1D654 𝙔 \(𝙔\) \(\mbfitsansY\) \mbfitsansY mathematical sans-serif bold italic capital yU+1D655 𝙕 \(𝙕\) \(\mbfitsansZ\) \mbfitsansZ mathematical sans-serif bold italic capital zU+1D656 𝙖 \(𝙖\) \(\mbfitsansa\) \mbfitsansa mathematical sans-serif bold italic small aU+1D657 𝙗 \(𝙗\) \(\mbfitsansb\) \mbfitsansb mathematical sans-serif bold italic small bU+1D658 𝙘 \(𝙘\) \(\mbfitsansc\) \mbfitsansc mathematical sans-serif bold italic small cU+1D659 𝙙 \(𝙙\) \(\mbfitsansd\) \mbfitsansd mathematical sans-serif bold italic small dU+1D65A 𝙚 \(𝙚\) \(\mbfitsanse\) \mbfitsanse mathematical sans-serif bold italic small eU+1D65B 𝙛 \(𝙛\) \(\mbfitsansf\) \mbfitsansf mathematical sans-serif bold italic small fU+1D65C 𝙜 \(𝙜\) \(\mbfitsansg\) \mbfitsansg mathematical sans-serif bold italic small gU+1D65D 𝙝 \(𝙝\) \(\mbfitsansh\) \mbfitsansh mathematical sans-serif bold italic small hU+1D65E 𝙞 \(𝙞\) \(\mbfitsansi\) \mbfitsansi mathematical sans-serif bold italic small iU+1D65F 𝙟 \(𝙟\) \(\mbfitsansj\) \mbfitsansj mathematical sans-serif bold italic small jU+1D660 𝙠 \(𝙠\) \(\mbfitsansk\) \mbfitsansk mathematical sans-serif bold italic small kU+1D661 𝙡 \(𝙡\) \(\mbfitsansl\) \mbfitsansl mathematical sans-serif bold italic small lU+1D662 𝙢 \(𝙢\) \(\mbfitsansm\) \mbfitsansm mathematical sans-serif bold italic small mU+1D663 𝙣 \(𝙣\) \(\mbfitsansn\) \mbfitsansn mathematical sans-serif bold italic small nU+1D664 𝙤 \(𝙤\) \(\mbfitsanso\) \mbfitsanso mathematical sans-serif bold italic small oU+1D665 𝙥 \(𝙥\) \(\mbfitsansp\) \mbfitsansp mathematical sans-serif bold italic small pU+1D666 𝙦 \(𝙦\) \(\mbfitsansq\) \mbfitsansq mathematical sans-serif bold italic small qU+1D667 𝙧 \(𝙧\) \(\mbfitsansr\) \mbfitsansr mathematical sans-serif bold italic small rU+1D668 𝙨 \(𝙨\) \(\mbfitsanss\) \mbfitsanss mathematical sans-serif bold italic small sU+1D669 𝙩 \(𝙩\) \(\mbfitsanst\) \mbfitsanst mathematical sans-serif bold italic small tU+1D66A 𝙪 \(𝙪\) \(\mbfitsansu\) \mbfitsansu mathematical sans-serif bold italic small uU+1D66B 𝙫 \(𝙫\) \(\mbfitsansv\) \mbfitsansv mathematical sans-serif bold italic small vU+1D66C 𝙬 \(𝙬\) \(\mbfitsansw\) \mbfitsansw mathematical sans-serif bold italic small wU+1D66D 𝙭 \(𝙭\) \(\mbfitsansx\) \mbfitsansx mathematical sans-serif bold italic small xU+1D66E 𝙮 \(𝙮\) \(\mbfitsansy\) \mbfitsansy mathematical sans-serif bold italic small yU+1D66F 𝙯 \(𝙯\) \(\mbfitsansz\) \mbfitsansz mathematical sans-serif bold italic small zU+1D756 𝝖 \(𝝖\) \(\mbfsansAlpha\) \mbfsansAlpha mathematical sans-serif bold capital alphaU+1D757 𝝗 \(𝝗\) \(\mbfsansBeta\) \mbfsansBeta mathematical sans-serif bold capital betaU+1D758 𝝘 \(𝝘\) \(\mbfsansGamma\) \mbfsansGamma mathematical sans-serif bold capital gammaU+1D759 𝝙 \(𝝙\) \(\mbfsansDelta\) \mbfsansDelta mathematical sans-serif bold capital deltaU+1D75A 𝝚 \(𝝚\) \(\mbfsansEpsilon\) \mbfsansEpsilon mathematical sans-serif bold capital epsilonU+1D75B 𝝛 \(𝝛\) \(\mbfsansZeta\) \mbfsansZeta mathematical sans-serif bold capital zetaU+1D75C 𝝜 \(𝝜\) \(\mbfsansEta\) \mbfsansEta mathematical sans-serif bold capital etaU+1D75D 𝝝 \(𝝝\) \(\mbfsansTheta\) \mbfsansTheta mathematical sans-serif bold capital thetaU+1D75E 𝝞 \(𝝞\) \(\mbfsansIota\) \mbfsansIota mathematical sans-serif bold capital iotaU+1D75F 𝝟 \(𝝟\) \(\mbfsansKappa\) \mbfsansKappa mathematical sans-serif bold capital kappaU+1D760 𝝠 \(𝝠\) \(\mbfsansLambda\) \mbfsansLambda mathematical sans-serif bold capital lambdaU+1D761 𝝡 \(𝝡\) \(\mbfsansMu\) \mbfsansMu mathematical sans-serif bold capital muU+1D762 𝝢 \(𝝢\) \(\mbfsansNu\) \mbfsansNu mathematical sans-serif bold capital nuU+1D763 𝝣 \(𝝣\) \(\mbfsansXi\) \mbfsansXi mathematical sans-serif bold capital xiU+1D764 𝝤 \(𝝤\) \(\mbfsansOmicron\) \mbfsansOmicron mathematical sans-serif bold capital omicronU+1D765 𝝥 \(𝝥\) \(\mbfsansPi\) \mbfsansPi mathematical sans-serif bold capital piU+1D766 𝝦 \(𝝦\) \(\mbfsansRho\) \mbfsansRho mathematical sans-serif bold capital rhoU+1D767 𝝧 \(𝝧\) \(\mbfsansvarTheta\) \mbfsansvarTheta mathematical sans-serif bold capital theta symbolU+1D768 𝝨 \(𝝨\) \(\mbfsansSigma\) \mbfsansSigma mathematical sans-serif bold capital sigmaU+1D769 𝝩 \(𝝩\) \(\mbfsansTau\) \mbfsansTau mathematical sans-serif bold capital tauU+1D76A 𝝪 \(𝝪\) \(\mbfsansUpsilon\) \mbfsansUpsilon mathematical sans-serif bold capital upsilonU+1D76B 𝝫 \(𝝫\) \(\mbfsansPhi\) \mbfsansPhi mathematical sans-serif bold capital phiU+1D76C 𝝬 \(𝝬\) \(\mbfsansChi\) \mbfsansChi mathematical sans-serif bold capital chiU+1D76D 𝝭 \(𝝭\) \(\mbfsansPsi\) \mbfsansPsi mathematical sans-serif bold capital psiU+1D76E 𝝮 \(𝝮\) \(\mbfsansOmega\) \mbfsansOmega mathematical sans-serif bold capital omegaU+1D770 𝝰 \(𝝰\) \(\mbfsansalpha\) \mbfsansalpha mathematical sans-serif bold small alphaU+1D771 𝝱 \(𝝱\) \(\mbfsansbeta\) \mbfsansbeta mathematical sans-serif bold small betaU+1D772 𝝲 \(𝝲\) \(\mbfsansgamma\) \mbfsansgamma mathematical sans-serif bold small gammaU+1D773 𝝳 \(𝝳\) \(\mbfsansdelta\) \mbfsansdelta mathematical sans-serif bold small deltaU+1D774 𝝴 \(𝝴\) \(\mbfsansvarepsilon\) \mbfsansvarepsilon mathematical sans-serif bold small varepsilonU+1D775 𝝵 \(𝝵\) \(\mbfsanszeta\) \mbfsanszeta mathematical sans-serif bold small zetaU+1D776 𝝶 \(𝝶\) \(\mbfsanseta\) \mbfsanseta mathematical sans-serif bold small etaU+1D777 𝝷 \(𝝷\) \(\mbfsanstheta\) \mbfsanstheta mathematical sans-serif bold small thetaU+1D778 𝝸 \(𝝸\) \(\mbfsansiota\) \mbfsansiota mathematical sans-serif bold small iotaU+1D779 𝝹 \(𝝹\) \(\mbfsanskappa\) \mbfsanskappa mathematical sans-serif bold small kappaU+1D77A 𝝺 \(𝝺\) \(\mbfsanslambda\) \mbfsanslambda mathematical sans-serif bold small lambdaU+1D77B 𝝻 \(𝝻\) \(\mbfsansmu\) \mbfsansmu mathematical sans-serif bold small muU+1D77C 𝝼 \(𝝼\) \(\mbfsansnu\) \mbfsansnu mathematical sans-serif bold small nuU+1D77D 𝝽 \(𝝽\) \(\mbfsansxi\) \mbfsansxi mathematical sans-serif bold small xiU+1D77E 𝝾 \(𝝾\) \(\mbfsansomicron\) \mbfsansomicron mathematical sans-serif bold small omicronU+1D77F 𝝿 \(𝝿\) \(\mbfsanspi\) \mbfsanspi mathematical sans-serif bold small piU+1D780 𝞀 \(𝞀\) \(\mbfsansrho\) \mbfsansrho mathematical sans-serif bold small rhoU+1D781 𝞁 \(𝞁\) \(\mbfsansvarsigma\) \mbfsansvarsigma mathematical sans-serif bold small final sigmaU+1D782 𝞂 \(𝞂\) \(\mbfsanssigma\) \mbfsanssigma mathematical sans-serif bold small sigmaU+1D783 𝞃 \(𝞃\) \(\mbfsanstau\) \mbfsanstau mathematical sans-serif bold small tauU+1D784 𝞄 \(𝞄\) \(\mbfsansupsilon\) \mbfsansupsilon mathematical sans-serif bold small upsilonU+1D785 𝞅 \(𝞅\) \(\mbfsansvarphi\) \mbfsansvarphi mathematical sans-serif bold small phiU+1D786 𝞆 \(𝞆\) \(\mbfsanschi\) \mbfsanschi mathematical sans-serif bold small chiU+1D787 𝞇 \(𝞇\) \(\mbfsanspsi\) \mbfsanspsi mathematical sans-serif bold small psiU+1D788 𝞈 \(𝞈\) \(\mbfsansomega\) \mbfsansomega mathematical sans-serif bold small omegaU+1D789 𝞉 \(𝞉\) \(\mbfsanspartial\) \mbfsanspartial mathematical sans-serif bold partial differentialU+1D78A 𝞊 \(𝞊\) \(\mbfsansepsilon\) \mbfsansepsilon mathematical sans-serif bold varepsilon symbolU+1D78B 𝞋 \(𝞋\) \(\mbfsansvartheta\) \mbfsansvartheta mathematical sans-serif bold theta symbolU+1D78C 𝞌 \(𝞌\) \(\mbfsansvarkappa\) \mbfsansvarkappa mathematical sans-serif bold kappa symbolU+1D78D 𝞍 \(𝞍\) \(\mbfsansphi\) \mbfsansphi mathematical sans-serif bold phi symbolU+1D78E 𝞎 \(𝞎\) \(\mbfsansvarrho\) \mbfsansvarrho mathematical sans-serif bold rho symbolU+1D78F 𝞏 \(𝞏\) \(\mbfsansvarpi\) \mbfsansvarpi mathematical sans-serif bold pi symbolU+1D790 𝞐 \(𝞐\) \(\mbfitsansAlpha\) \mbfitsansAlpha mathematical sans-serif bold italic capital alphaU+1D791 𝞑 \(𝞑\) \(\mbfitsansBeta\) \mbfitsansBeta mathematical sans-serif bold italic capital betaU+1D792 𝞒 \(𝞒\) \(\mbfitsansGamma\) \mbfitsansGamma mathematical sans-serif bold italic capital gammaU+1D793 𝞓 \(𝞓\) \(\mbfitsansDelta\) \mbfitsansDelta mathematical sans-serif bold italic capital deltaU+1D794 𝞔 \(𝞔\) \(\mbfitsansEpsilon\) \mbfitsansEpsilon mathematical sans-serif bold italic capital epsilonU+1D795 𝞕 \(𝞕\) \(\mbfitsansZeta\) \mbfitsansZeta mathematical sans-serif bold italic capital zetaU+1D796 𝞖 \(𝞖\) \(\mbfitsansEta\) \mbfitsansEta mathematical sans-serif bold italic capital etaU+1D797 𝞗 \(𝞗\) \(\mbfitsansTheta\) \mbfitsansTheta mathematical sans-serif bold italic capital thetaU+1D798 𝞘 \(𝞘\) \(\mbfitsansIota\) \mbfitsansIota mathematical sans-serif bold italic capital iotaU+1D799 𝞙 \(𝞙\) \(\mbfitsansKappa\) \mbfitsansKappa mathematical sans-serif bold italic capital kappaU+1D79A 𝞚 \(𝞚\) \(\mbfitsansLambda\) \mbfitsansLambda mathematical sans-serif bold italic capital lambdaU+1D79B 𝞛 \(𝞛\) \(\mbfitsansMu\) \mbfitsansMu mathematical sans-serif bold italic capital muU+1D79C 𝞜 \(𝞜\) \(\mbfitsansNu\) \mbfitsansNu mathematical sans-serif bold italic capital nuU+1D79D 𝞝 \(𝞝\) \(\mbfitsansXi\) \mbfitsansXi mathematical sans-serif bold italic capital xiU+1D79E 𝞞 \(𝞞\) \(\mbfitsansOmicron\) \mbfitsansOmicron mathematical sans-serif bold italic capital omicronU+1D79F 𝞟 \(𝞟\) \(\mbfitsansPi\) \mbfitsansPi mathematical sans-serif bold italic capital piU+1D7A0 𝞠 \(𝞠\) \(\mbfitsansRho\) \mbfitsansRho mathematical sans-serif bold italic capital rhoU+1D7A1 𝞡 \(𝞡\) \(\mbfitsansvarTheta\) \mbfitsansvarTheta mathematical sans-serif bold italic capital theta symbolU+1D7A2 𝞢 \(𝞢\) \(\mbfitsansSigma\) \mbfitsansSigma mathematical sans-serif bold italic capital sigmaU+1D7A3 𝞣 \(𝞣\) \(\mbfitsansTau\) \mbfitsansTau mathematical sans-serif bold italic capital tauU+1D7A4 𝞤 \(𝞤\) \(\mbfitsansUpsilon\) \mbfitsansUpsilon mathematical sans-serif bold italic capital upsilonU+1D7A5 𝞥 \(𝞥\) \(\mbfitsansPhi\) \mbfitsansPhi mathematical sans-serif bold italic capital phiU+1D7A6 𝞦 \(𝞦\) \(\mbfitsansChi\) \mbfitsansChi mathematical sans-serif bold italic capital chiU+1D7A7 𝞧 \(𝞧\) \(\mbfitsansPsi\) \mbfitsansPsi mathematical sans-serif bold italic capital psiU+1D7A8 𝞨 \(𝞨\) \(\mbfitsansOmega\) \mbfitsansOmega mathematical sans-serif bold italic capital omegaU+1D7AA 𝞪 \(𝞪\) \(\mbfitsansalpha\) \mbfitsansalpha mathematical sans-serif bold italic small alphaU+1D7AB 𝞫 \(𝞫\) \(\mbfitsansbeta\) \mbfitsansbeta mathematical sans-serif bold italic small betaU+1D7AC 𝞬 \(𝞬\) \(\mbfitsansgamma\) \mbfitsansgamma mathematical sans-serif bold italic small gammaU+1D7AD 𝞭 \(𝞭\) \(\mbfitsansdelta\) \mbfitsansdelta mathematical sans-serif bold italic small deltaU+1D7AE 𝞮 \(𝞮\) \(\mbfitsansvarepsilon\) \mbfitsansvarepsilon mathematical sans-serif bold italic small varepsilonU+1D7AF 𝞯 \(𝞯\) \(\mbfitsanszeta\) \mbfitsanszeta mathematical sans-serif bold italic small zetaU+1D7B0 𝞰 \(𝞰\) \(\mbfitsanseta\) \mbfitsanseta mathematical sans-serif bold italic small etaU+1D7B1 𝞱 \(𝞱\) \(\mbfitsanstheta\) \mbfitsanstheta mathematical sans-serif bold italic small thetaU+1D7B2 𝞲 \(𝞲\) \(\mbfitsansiota\) \mbfitsansiota mathematical sans-serif bold italic small iotaU+1D7B3 𝞳 \(𝞳\) \(\mbfitsanskappa\) \mbfitsanskappa mathematical sans-serif bold italic small kappaU+1D7B4 𝞴 \(𝞴\) \(\mbfitsanslambda\) \mbfitsanslambda mathematical sans-serif bold italic small lambdaU+1D7B5 𝞵 \(𝞵\) \(\mbfitsansmu\) \mbfitsansmu mathematical sans-serif bold italic small muU+1D7B6 𝞶 \(𝞶\) \(\mbfitsansnu\) \mbfitsansnu mathematical sans-serif bold italic small nuU+1D7B7 𝞷 \(𝞷\) \(\mbfitsansxi\) \mbfitsansxi mathematical sans-serif bold italic small xiU+1D7B8 𝞸 \(𝞸\) \(\mbfitsansomicron\) \mbfitsansomicron mathematical sans-serif bold italic small omicronU+1D7B9 𝞹 \(𝞹\) \(\mbfitsanspi\) \mbfitsanspi mathematical sans-serif bold italic small piU+1D7BA 𝞺 \(𝞺\) \(\mbfitsansrho\) \mbfitsansrho mathematical sans-serif bold italic small rhoU+1D7BB 𝞻 \(𝞻\) \(\mbfitsansvarsigma\) \mbfitsansvarsigma mathematical sans-serif bold italic small final sigmaU+1D7BC 𝞼 \(𝞼\) \(\mbfitsanssigma\) \mbfitsanssigma mathematical sans-serif bold italic small sigmaU+1D7BD 𝞽 \(𝞽\) \(\mbfitsanstau\) \mbfitsanstau mathematical sans-serif bold italic small tauU+1D7BE 𝞾 \(𝞾\) \(\mbfitsansupsilon\) \mbfitsansupsilon mathematical sans-serif bold italic small upsilonU+1D7BF 𝞿 \(𝞿\) \(\mbfitsansvarphi\) \mbfitsansvarphi mathematical sans-serif bold italic small phiU+1D7C0 𝟀 \(𝟀\) \(\mbfitsanschi\) \mbfitsanschi mathematical sans-serif bold italic small chiU+1D7C1 𝟁 \(𝟁\) \(\mbfitsanspsi\) \mbfitsanspsi mathematical sans-serif bold italic small psiU+1D7C2 𝟂 \(𝟂\) \(\mbfitsansomega\) \mbfitsansomega mathematical sans-serif bold italic small omegaU+1D7C3 𝟃 \(𝟃\) \(\mbfitsanspartial\) \mbfitsanspartial mathematical sans-serif bold italic partial differentialU+1D7C4 𝟄 \(𝟄\) \(\mbfitsansepsilon\) \mbfitsansepsilon mathematical sans-serif bold italic varepsilon symbolU+1D7C5 𝟅 \(𝟅\) \(\mbfitsansvartheta\) \mbfitsansvartheta mathematical sans-serif bold italic theta symbolU+1D7C6 𝟆 \(𝟆\) \(\mbfitsansvarkappa\) \mbfitsansvarkappa mathematical sans-serif bold italic kappa symbolU+1D7C7 𝟇 \(𝟇\) \(\mbfitsansphi\) \mbfitsansphi mathematical sans-serif bold italic phi symbolU+1D7C8 𝟈 \(𝟈\) \(\mbfitsansvarrho\) \mbfitsansvarrho mathematical sans-serif bold italic rho symbolU+1D7C9 𝟉 \(𝟉\) \(\mbfitsansvarpi\) \mbfitsansvarpi mathematical sans-serif bold italic pi symbolU+1D6A4 𝚤 \(𝚤\) \(\imath\) \imath mathematical italic small dotless iU+1D6A5 𝚥 \(𝚥\) \(\jmath\) \jmath mathematical italic small dotless jU+1D6C1 𝛁 \(𝛁\) \(\mbfnabla\) \mbfnabla mathematical bold nablaU+1D6FB 𝛻 \(𝛻\) \(\mitnabla\) \mitnabla mathematical italic nablaU+1D735 𝜵 \(𝜵\) \(\mbfitnabla\) \mbfitnabla mathematical bold italic nablaU+1D76F 𝝯 \(𝝯\) \(\mbfsansnabla\) \mbfsansnabla mathematical sans-serif bold nablaU+1D7A9 𝞩 \(𝞩\) \(\mbfitsansnabla\) \mbfitsansnabla mathematical sans-serif bold italic nablaU+1D7CA 𝟊 \(𝟊\) \(\mbfDigamma\) \mbfDigamma mathematical bold capital digammaU+1D7CB 𝟋 \(𝟋\) \(\mbfdigamma\) \mbfdigamma mathematical bold small digammaUnicode では通貨記号が充実しているので、MathJax や KaTeX では部分的ウェブフォント回避の観点から、それらで上書きしてしまってもよいと考える。ちなみに、青色は MathJax, KaTeX でサポート。橙色以外は他所で提案済みコマンド名。
U+00024 $ \(\unicode{x0024}\) \(\dollar\) \dollar Dollar signU+020AC € \(\unicode{x20AC}\) \(\euro\) \euro Euro signU+000A5 ¥ \(\unicode{x00A5}\) \(\yen\) \yen Yen signU+000A2 ¢ \(\unicode{x00A2}\) \(\cent\) \cent Cent signU+000A3 £ \(\unicode{x00A3}\) \(\pound\) \pound Pound signU+020BD ₽ \(\unicode{x20BD}\) \(\ruble\) \ruble Ruble signU+020A8 ₨ \(\unicode{x20A8}\) \(\rupee\) \rupee Rupee signU+020A9 ₩ \(\unicode{x20A9}\) \(\won\) \won Won signU+00E3F ฿ \(\unicode{x0E3F}\) \(\baht\) \baht Thai Currency Symbol BahtU+020BA ₺ \(\unicode{x20BA}\) \(\turkishlira\) \turkishlira Turkish Lira signU+020AE ₮ \(\unicode{x20AE}\) \(\tugrik\) \tugrik Tugrik signU+020B1 ₱ \(\unicode{x20B1}\) \(\peso\) \peso Peso signU+020AD ₭ \(\unicode{x20AD}\) \(\kip\) \kip Kip signU+020B4 ₴ \(\unicode{x20B4}\) \(\hryvnia\) \hryvnia Hryvnia signU+020A6 ₦ \(\unicode{x20A6}\) \(\naira\) \naira Naira signU+009F2 ৲ \(\unicode{x09F2}\) \(\bengalirupeemark\) \bengalirupeemark Bengali Rupee markU+009F3 ৳ \(\unicode{x09F3}\) \(\bengalirupee\) \bengalirupee Bengali Rupee signU+00AF1 ૱ \(\unicode{x0AF1}\) \(\gujaratirupee\) \gujaratirupee Gujarati Rupee signU+00BF9 ௹ \(\unicode{x0BF9}\) \(\tamilrupee\) \tamilrupee Tamil Rupee signU+0FDFC ﷼ \(\unicode{xFDFC}\) \(\rial\) \rial Rial signU+020B9 ₹ \(\unicode{x20B9}\) \(\indianrupee\) \indianrupee Indian Rupee signU+020B2 ₲ \(\unicode{x20B2}\) \(\guarani\) \guarani Guarani signU+020AA ₪ \(\unicode{x20AA}\) \(\sheqel\) \sheqel New Sheqel signU+020A1 ₡ \(\unicode{x20A1}\) \(\colonsign\) \colonsign Colon signU+020AB ₫ \(\unicode{x20AB}\) \(\dong\) \dong Dong signU+017DB ៛ \(\unicode{x17DB}\) \(\khmer\) \khmer Khmer Currency Symbol RielU+020B5 ₵ \(\unicode{x20B5}\) \(\cedi\) \cedi Cedi signU+020A2 ₢ \(\unicode{x20A2}\) \(\cruzeiro\) \cruzeiro Cruzeiro signU+020B8 ₸ \(\unicode{x20B8}\) \(\tenge\) \tenge Tenge signU+020A4 ₤ \(\unicode{x20A4}\) \(\lira\) \lira Lira signU+020B3 ₳ \(\unicode{x20B3}\) \(\austral\) \austral Austral signU+020A5 ₥ \(\unicode{x20A5}\) \(\mill\) \mill Mill signU+020A0 ₠ \(\unicode{x20A0}\) \(\eurocurrency\) \eurocurrency Euro-Currency signU+020A3 ₣ \(\unicode{x20A3}\) \(\franc\) \franc French Franc signU+020B0 ₰ \(\unicode{x20B0}\) \(\penny\) \penny German Penny signU+020A7 ₧ \(\unicode{x20A7}\) \(\peseta\) \peseta Peseta signU+020AF ₯ \(\unicode{x20AF}\) \(\drachme\) \drachme Drachma signU+020B6 ₶ \(\unicode{x20B6}\) \(\livretournois\) \livretournois Livre Tournois signU+020B7 ₷ \(\unicode{x20B7}\) \(\spesmilo\) \spesmilo Spesmilo signU+0060B ؋ \(\unicode{x060B}\) \(\afghani\) \afghani Afghani signU+00191 Ƒ \(\unicode{x0191}\) \(\Florin\) \Florin Aruba GuilderU+00192 ƒ \(\unicode{x0192}\) \(\florin\) \florin Netherlands Antilles GuilderU+020BC ₼ \(\unicode{x20BC}\) \(\manat\) \manat Manat sign但し、あくまで MathJax, KaTeX システムに頼らず Unicode を直接叩くので閲覧環境のフォント次第となることは改めて注意が必要である。例えば、上記の \rupee と \manat は手元では工夫をしなければ表示されなかった。その工夫は以下の通り。
/* HTML の head > style 内に以下を入れておく。*/
/* only for this article. consider better one for the others. */
body { font-family: "Source Serif Variable", "Noto Serif", serif; }
mjx-char { font-family: STIXGeneral, "Source Serif Variable", "Noto Serif", serif; }
mjx-utext { font-family: MJXZERO, "Source Serif Variable", "Noto Serif", serif !important; }
.katex { font-family: KaTeX_Main, "Times New Roman", "Source Serif Variable", "Noto Serif", serif; }
MathJax では TeX ではあまり見かけないコマンドがサポートされていることも多々あり、どうも WikiPedia の MediaWiki で使用されている texvc 由来のコマンドが導入されているようである。それらはデファクトスタンダードになり得るので、価値あるものは KaTeX でも対応を目指してみる。
具体的な実現方法は後述するが、まずは、実例を列挙する。
\N \[\N\]\Z \[\Z\]\Q \[\Q\]\R \[\R\]\C \[\C\]\RiemannSphere \[\RiemannSphere\]\Hamilton \[\Hamilton\]\O \[\O\]\Cl \[\Cl\]\Coppa \[\Coppa\]\Digamma \[\Digamma\]\Koppa \[\Koppa\]\Sampi \[\Sampi\]\Stigma \[\Stigma\]\coppa \[\coppa\]\koppa \[\koppa\]\sampi \[\sampi\]\stigma \[\stigma\]\bigsqcap_{i=0}^\infty \[\bigsqcap_{i=0}^\infty\]\bracevert \[\bracevert\]\dddot,\ddddot \[\dddot{x}\quad\ddddot{x}\]\idotsint_0^\infty x \[\idotsint_0^\infty x\]\iiiint_0^\infty x \[\iiiint_0^\infty x\]\leftarrowtail \[\leftarrowtail\]\ndownarrow \[x\ndownarrow y\]\nuparrow \[x\nuparrow y\]\lower{}{} \[l\lower{2pt}{owe}r\]\moveleft,\moveright \[\square\square\moveleft{2em}{\blacksquare\blacksquare}.\] \[\square\square\moveright{2em}{\blacksquare\blacksquare}.\]\mspace \[a\mspace18mu b\]\overparen,\underparen \[\overparen{\underparen{x\cdots y}}\]\rightarrowtail \[\rightarrowtail\]\strut \[\sqrt{(\ )}\] \[\sqrt{\mathstrut\rm mathstrut}\] \[\sqrt{\strut\rm strut}\]\prescript \[\prescript{14}{5}{\mathrm{C}}^{5+}_2\]\splitdfrac,\splitfrac \[\splitdfrac{xy}{ab} \quad \splitfrac{xy}{ab}\]\bigominus \[\bigominus_x^yz\]\bigoslash \[\bigoslash_x^yz\]\ang \[\ang{30}\]\iddots \[\iddots\]\smiley \[\newcommand{\smiley}{😀} \smiley\]\varcoppa \[\varcoppa\]具体的な代替方法は後述するが、まずは、実例を列挙する。
\abovewithdelims \[{x\abovewithdelims . | 1.5pt y}_z\]\genfrac \[\genfrac{.}{|}{1.5pt}{}{x}{y}_z\]\atopwithdelims \[{x\atopwithdelims . | y}_z\]\genfrac \[\genfrac{.}{|}{0pt}{}{x}{y}_z\]\buildrel \[\buildrel \rm def \over {:=}\]\stackrel \[\stackrel{\rm def}{:=}\]\cancelto \[\cancelto{0}{C}\]\leftroot,\uproot \[\sqrt[3\leftroot1]{x}\] \[\root 3\leftroot{-1} \of x\] \[\root 3\leftroot{-1}\uproot2 \of x\]\oldstyle \[{\oldstyle 01234}56789{\oldstyle ABC}DEF{\oldstyle abc}def\]\overwithdelims \[{x\overwithdelims . | y}_z\]\genfrac \[\genfrac{.}{|}{}{}{x}{y}_z\]\skew{n} \[\dot{Ŭ}.\implies\skew{7}\dot{Ŭ}.\]\kern{-7mu} \[\dot{Ŭ}.\implies\dot{\kern{-7mu}Ŭ}.\]\unicode{x9ABC} \[\unicode{x9ABC}\]\char"9ABC \I \[\newcommand{\I}{\Bbb{I}} \I\]\L \[\newcommand{\L}{\Bbb{L}} \L\]\LeftArrow \[\newcommand{\LeftArrow}{\LLeftarrow} \LeftArrow\]\and \[\newcommand{\and}{\land} A\and B\]\cf \[\newcommand{\cf}{\text{cf. }}\cf\]\cline \[\verb|\cline|\]\geneuro \[\geneuro\]\geneuronarrow \[\geneuronarrow\]\geneurowide \[\geneurowide\]\itshape \[\verb|{\itshape italic shape}|\]\md \[\verb|{\md medium face}|\]\normalfont \[\verb|\normalfont|\]\or \[\newcommand{\or}{\lor} A\or B\]\overbracket \[\overbracket{x\cdots y}^z\]\rotatebox \[\newcommand{\rotatebox}[2]{\style{ transform: rotate(#1deg); }{#2}} x\rotatebox{30}{y}z\]\sc \[\verb|{\sc small caps}|\]\scalebox \[\newcommand{\scalebox}[2]{\style{ transform: scale(#1); }{#2}} x\scalebox{.5}{y}z\]\skip \[\verb|\skip|\]\sl \[\verb|{\sl slanted shape}|\]\textsc \[\textsc{small caps}\]\textsl \[\textsl{slanted shape}\]\underbracket \[\underbracket{x\cdots y}_z\]\up \[\verb|{\up up shape}|\]\upshape \[\verb|{\upshape up shape}|\]\vline \[\verb|\vline|\]\wideparen \[\newcommand{\wideparen}[1]{\overbrace{#1}} \wideparen{x\cdots y}\]以下のようなマクロを定義しておけばよい(技術的に似たものは省略)。
\newcommand{\R}{\mathrm{R}}
\newcommand{\Cl}{\mathit{C\ell}}
%\newcommand{\stigma}{\style{ font-style: italic; }{ϛ}} % for MathJax
\newcommand{\stigma}{\htmlStyle{ font-style: italic; }{ϛ}} % for KaTeX
\newcommand{\varcoppa}{ϙ}
\newcommand{\strut}{\phantom{\rule[3pt]{}{8.6pt}}}
%\newcommand{\mathstrut}{\vphantom{(}} % already defined in KaTeX
%\newcommand{\iddots}{{\kern3mu\raise1mu{.}\kern3mu\raise6mu{.}\kern3mu\raise12mu{.}}} % for MathJax
\newcommand{\iddots}{{\scriptsize{\cdot\>}^{\scriptsize{\cdot\>}^{\scriptsize{\cdot\>}}}}} % for KaTeX
\newcommand{\idotsint}{\int\!\cdots\!\int}
\newcommand{\bracevert}{\vert} % use it with \middle
\newcommand{\overparen}{\overgroup}
\newcommand{\underparen}{\undergroup}
\newcommand{\mspace}{\kern}
\newcommand{\lower}[2]{\raise{-#1}{#2}}
\newcommand{\moveleft}[2]{\kern{-#1}\mathrlap{#2}\kern{#1}\phantom{#2}}
\newcommand{\moveright}[2]{\kern{#1}\mathrlap{#2}\kern{-#1}\phantom{#2}}
\newcommand{\prescript}{\phantom{{}^{#1}_{#2}}{}^{\mathllap{#1}}_{\mathllap{#2}}#3}
%\newcommand{\bigominus}{\mathop{\phantom{\rule{1em}{1em}}\moveleft{.5em}{\raise{.1em}{\mathclap{\bigcirc}\mathclap{-}}}}} % for MathJax
\newcommand{\bigominus}{\operatornamewithlimits{\phantom{\rule{1em}{1em}}\moveleft{.5em}{\raise{.1em}{\mathclap{\bigcirc}\mathclap{-}}}}} % for KaTeX
\newcommand{\ang}[1]{#1\degree}
\newcommand{\smiley}{😀}
\newcommand{\splitdfrac}[2]{\displaystyle{#1\hphantom{#2}\atop\hphantom{#1}#2}}
\newcommand{\splitfrac}[2]{\textstyle{\displaystyle{#1\hphantom{#2}}\atop\displaystyle{\hphantom{#1}#2}}}
以下のように他のコマンドで代替すればよい。
\abovewithdelims \[{x\abovewithdelims . | 1.5pt y}_z\] % for MathJax
use \genfrac \[\genfrac{.}{|}{1.5pt}{}{x}{y}_z\] % for KaTeX
\atopwithdelims \[{x\atopwithdelims . | y}_z\] % for MathJax
use \genfrac \[\genfrac{.}{|}{0pt}{}{x}{y}_z\] % for KaTeX
\buildrel \[\buildrel \rm def \over {:=}\] % for MathJax
use \stackrel \[\stackrel{\rm def}{:=}\] % for KaTeX
\overwithdelims \[{x\overwithdelims . | y}_z\] % for MathJax
use \genfrac \[\genfrac{.}{|}{}{}{x}{y}_z\] % for KaTeX
\skew{n} \[\dot{Ŭ}.\implies\skew{7}\dot{Ŭ}.\] % for MathJax
use \kern{-1mu} \[\dot{Ŭ}.\implies\dot{\kern{-1mu}Ŭ}.\] % for KaTeX
\unicode{x9ABC} \[\unicode{x9ABC}\] % for MathJax
use \char"9ABC \[\char"9ABC\] % for KaTeX
この KaTeX オプションは以下にあげる棒線が太い MathJax v2 に似せるか、細い MathJax に似せるかのためにあるものと想像するが、試験環境として残しておく。
\[ \sqrt[3]{i^3 + j^3 + k^3},\qquad \underline{x\cdots y},\qquad \overline{x\cdots y},\qquad \boxed{E = mc^2},\qquad \mathfbox{E = mc^2},\qquad {\sin\theta\over\cos\theta},\qquad \frac{\sin\theta}{\cos\theta},\qquad \varliminf_x\;y,\qquad \varlimsup_x\;y,\qquad \]既定値だと、言われてみれば少し細すぎるのかもしれない。ここでは KaTeX にて 0.06 あたりにしてある。
KaTeX では幅ゼロの \rule は可能だが、
\[\therefore\rule[.5em]{0em}{1em}\because\qquad\verb|\therefore\rule[.5em]{0em}{1em}\because|\]
高さゼロの \rule は実現できない。KaTeX だと以下は細い横棒が見えてしまう。
\[\therefore\rule[.5em]{1em}{0em}\because\qquad\verb|\therefore\rule[.5em]{1em}{0em}\because|\]
とは言え、幅ゼロの活用はよくあるが、高さゼロの活用はなぜか見たことがないので問題ないのかもしれない。必要なら以下のように \phantom で囲って見えなくしてしまえばいいだろう。
\[\therefore\phantom{\rule[.5em]{1em}{0em}}\because\qquad\verb|\therefore\rule[.5em]{1em}{0em}\because|\]
\cancel コマンド\color, \colorbox コマンドMathJax では白抜きができないと思っていたが、もしかしたら勘違いかもしれない。そして少なくとも MathJax v2 では白抜きができていない。
\xtwoheadrightarrow, \xtwoheadleftarrow, \xlongequal, \xmapsto, \xtofrom 及び、非公式 \Newextarrow コマンド\ce コマンド{CD} 環境足りないと思ったけど AMSmath.js, AMSsymbols.js あたりは既定で導入されているのだと思う。よって、以下のようにすればよい。
MathJax.Hub.Config({
TeX: {
extensions: [
/*"AMSmath.js",
"AMSsymbols.js",*/
"AMScd.js",
"cancel.js",
"color.js",
"extpfeil.js",
"mhchem.js",
"mediawiki-texvc.js",
],
:
既に述べてあることに重複するので例は示さないが、以下のコマンドで「*」アスタリスクのついていないものは実現可能である。
\coloneq\Coloneq\coloneqq\Coloneqq\colonsim\Colonsim\colonapprox\Colonapprox\eqcolon\Eqcolon\eqqcolon\Eqqcolon\bigtimes\bra\ket\mathllap\mathrlap\mathclap*\mathmbox\ndownarrow\nuparrow\prescript\splitdfrac\splitfrac\textup{matrix*}*{rcases}*具体的にはマウスホバーして得られるマクロ定義を参照のこと。
以下のようにすればよい。
MathJax.Hub.Config({
'SVG': { // config=TeX-AMS_SVG
undefinedFamily: `\
'Hiragino Mincho ProN', \
'Hiragino Mincho Pro', \
'Noto Serif Japanese', \
'Source Han Serif JP', \
'Noto Serif CJK JP', \
'Noto Serif JP', \
'YuMincho', \
'TakaoMjMincho', \
'IPAmjMincho', \
'TakaoExMincho', \
'IPAexMincho', \
'BIZ UDPMincho', \
'Yu Mincho', \
'TakaoPMincho', \
'IPAPMincho', \
'MS PMincho', \
STIXGeneral, \
'Source Serif Variable', \
'Noto Serif', \
serif`,
},
'HTML-CSS': { // config=TeX-AMS_HTML
availableFonts: [ /*'STIXGeneral', */'TeX', ],
undefinedFamily: `\
'Hiragino Mincho ProN', \
'Hiragino Mincho Pro', \
'Noto Serif Japanese', \
'Source Han Serif JP', \
'Noto Serif CJK JP', \
'Noto Serif JP', \
'YuMincho', \
'TakaoMjMincho', \
'IPAmjMincho', \
'TakaoExMincho', \
'IPAexMincho', \
'BIZ UDPMincho', \
'Yu Mincho', \
'TakaoPMincho', \
'IPAPMincho', \
'MS PMincho', \
STIXGeneral, \
'Source Serif Variable', \
'Noto Serif', \
serif`,
},
CommonHTML: { // config=TeX-MML-AM_CHTML
undefinedFamily: `\
'Hiragino Mincho ProN', \
'Hiragino Mincho Pro', \
'Noto Serif Japanese', \
'Source Han Serif JP', \
'Noto Serif CJK JP', \
'Noto Serif JP', \
'YuMincho', \
'TakaoMjMincho', \
'IPAmjMincho', \
'TakaoExMincho', \
'IPAexMincho', \
'BIZ UDPMincho', \
'Yu Mincho', \
'TakaoPMincho', \
'IPAPMincho', \
'MS PMincho', \
STIXGeneral, \
'Source Serif Variable', \
'Noto Serif', \
serif`,
},
:
厄介なことに WordPress では絵文字をなんとしてでも表示させようとして、VS16 (Variation Selector 16) が付記されていなくても文字を絵文字画像にしてしまうお節介な機能がある。数式では矢印などは多用することから \updownallow, \blacktriangleleft, \blacktriangleright, \swarrow などが絵文字になってしまうのは極めて不自然な事態となる。
そこで、数式中の VS15〜16 が明示的に付記されていないこれらの文字には VS15 を明示的に付記する処理が必要になる。
前節と結果は同じなのだが、VS15 (Variation Selector 15) が付記されているのに着色絵文字になってしまう問題が KaTeX には存在する。これは VS15 を除去してしまうことに起因する。
真っ当な対処としては KaTeX を修正することであるが、拙速には数式のレンダリング後に VS15 を付記してしまうことも一考かもしれない。
\ddots と「⋰」U+22F0 の右上がり省略記号 \adots右下がり省略記号は行列の要素によく使われるが、他のこれらの具体的な使用場面を紹介する。
この \(\iddots\) \iddots の実装は MathJax では以下の通りである。
\newcommand{\iddots}{{\kern3mu\raise1mu{.}\kern3mu\raise6mu{.}\kern3mu\raise12mu{.}}}
これを KaTeX で実装しようとすると未サポートの \raise コマンドの代わりに \raisebox を使うしかない。
\newcommand{\iddots}{{\kern{3mu}\raisebox{1mu}{.}\kern{3mu}\raisebox{6mu}{.}\kern{3mu}\raisebox{12mu}{.}}}
しかし、KaTeX の \raisebox は \scriptstyle などの表示形式に追従しない問題がある。では、表示形式に対応した先の拙作 \raise で実現してみよう。
\newcommand{\iddots}{{\kern{3mu}\raise{1mu}{.}\kern{3mu}\raise{6mu}{.}\kern{3mu}\raise{12mu}{.}}}
すると、em, ex, mu の単位にカレントのフォントサイズに応じていない問題が顕になる。これは流石に治したいバグだ。よって、次の泥臭いマクロを使う。
\newcommand{\iddots}{{\scriptsize{\cdot\>}^{\scriptsize{\cdot\>}^{\scriptsize{\cdot\>}}}}}
実際にはさらに泥臭く調整をしている。
前者はかつて提案された TeX の機能でピリオドの組み合わせで構成された記号「\(\iddots\)」\iddots で、後者は Unicode で定義されている「⋰」U+22F0 (up right diagonal ellipsis) である。unicode-math では \(\adots\) \adots として定義されている。
各々に右肩上付きと左肩上付きのパターンがあり、さらに MathJax, KaTeX それぞれに微調整が必要になるが、一応許容範囲のタイプセットができているように思われる。ここでは他にも Unicode で代替した記号を試みており、以下にそれらをまとめておく。
| 非 Unicode | \(\coloneqq\) \coloneqq | \(\eqqcolon\) \eqqcolon | \(\uparrow\) \uparrow | \(\upuparrows\) \upuparrows | \(\upupuparrows\) \upupuparrows | \(\ddots\) \ddots | \(\iddots\) \iddots |
|---|---|---|---|---|---|---|---|
| Unicode | \(\UCcoloneq\) \UCcoloneq | \(\UCeqcolon\) \UCeqcolon | \(\UCuparrow\) \UCuparrow | \(\UCupuparrows\) \UCupuparrows | \(\UCupupuparrows\) \UCupupuparrows | \(\UCddots\) \UCddots | \(\adots\) \adots |
ブラウザのフォント設定によって、むしろ大抵の場合、表示されないであろうグリフの一部をここにまとめておく。この他にも Unicode の追加多言語面の絵文字の後ろに定義されている記号などは対応しているフォントは稀である。
U+20BD ₽ \(\ruble\) \ruble ruble sign流石に通貨記号はどのフォントでも安定して定義しておいて欲しいものである。
TeX の古にはフォントのグリフにも不自由していたので、似た形状のグリフで代用して紙媒体に印刷して凌ぐことは当たり前だった。しかし、昨今は紙媒体ではなく例えば PDF 形式のまま情報伝達され、かつ、「コピペ」した段階でも「形状」ではなく「意味」として情報交換用コードが維持される時代である。よって、グリフの代用は意味づけが誤ったまま伝達され続ける恐れがあり、グリフの「意味」を極力配慮する必要があると考える。以下に紛らわしいグリフをあげておくので形が似ているからといって適当に凌ごうとせずに正しいグリフを選ぶことを心掛けよう。その見地では TeX コマンド名には「意味」が込められていることが多いので良い命名のコマンドはその一助となると言える。但し、ほぼ同じ意味のグリフもあげているので局所にはいずれかに統一して使うことにも配慮できるだろう。
U+00D8 Ø \(\O\) \O Latin capital letter o with stroke, not \(\emptyset\) \emptyset, alsoU+00F8 ø \(\o\) \o Latin small letter o with stroke, nor belowU+2205 ∅ \(\varnothing\) \varnothing empty setU+00B0 ° \(\degree\) \degree degree sign, not belowU+02DA ˚ \(\symbol{02DA}\) \symbol{02DA} ring aboveU+00A6 ¦ \(\brokenbar\) \brokenbar broken bar, not belowU+007C | \(\textbar\) \textbar vertical line, nor belowU+2223 ∣ \(|\) | dividesU+203E ‾ \(\symbol{203E}\) \symbol{203E} overline, not belowU+00AF ¯ \(\textasciimacron\) \textasciimacron macronU+2A3F ⨿ \(\amalg\) \amalg amalgamation or coproduct, not belowU+2210 ⨿ \(\coprod\) \coprod n-ary coproduct, nor \(\bigsqcup\) \bigsqcup, nor ⨆ \symbol{2A06} n-ary square union operatorU+29BC ⦼ \(\odotslashdot\) \odotslashdot circled anticlockwise-rotated division sign, not belowU+2A38 ⨸ \(\odiv\) \odiv circled division signU+24B8 Ⓒ \(\circledC\) \circledC circled Latin capital letter c, not belowU+1F12B 🄫 \(\symbol{1F12B}\) \symbol{1F12B} circled italic Latin capital letter c, nor belowU+00A9 © \(\copyright\) \copyright copyright signU+24C7 Ⓡ \(\circledR\) \circledR circled Latin capital letter r, not belowU+1F12C 🄬 \(\symbol{1F12C}\) \symbol{1F12C} circled italic Latin capital letter r, nor belowU+00AE ® \(\registered\) \registered registered signU+24C5 Ⓟ \(\circledP\) \circledP circled Latin capital letter p, not belowU+2117 ℗ \(\phonogram\) \phonogram sound recording copyrightU+24C2 Ⓜ \(\circledM\) \circledM circled Latin capital letter m, not belowU+1F1AD 🆭 \(\maskwork\) \maskwork mask work symbolU+0251 ɑ \(\htit{\symbol{0251}}\) \symbol{0251} Latin small letter alpha, not belowU+03B1 α \(\alpha\) \alpha Greek small letter alphaU+03D0 ϐ \(\htit{\symbol{03D0}}\) \symbol{03D0} Greek beta symbol, not belowU+03B2 β \(\beta\) \beta Greek small letter betaU+1D26 ᴦ \(\htit{\symbol{1D26}}\) \symbol{1D26} Greek letter small capital gamma, not belowU+03B3 γ \(\gamma\) \gamma Greek small letter gammaU+1E9F ẟ \(\htit{\symbol{1E9F}}\) \symbol{1E9F} Latin small letter delta, not belowU+03B4 δ \(\delta\) \delta Greek small letter deltaU+01B1 Ʊ \(\htit{\symbol{01B1}}\) \symbol{01B1} Latin capital letter upsilon, not belowU+2127 ℧ \(\mho\) \mho inverted ohm signU+1D2A ᴪ \(\htit{\symbol{1D2A}}\) \symbol{1D2A} Greek letter small capital psi, not belowU+03C8 ψ \(\psi\) \psi Greek small letter psi, nor ⫝̸ \symbol{2ADC} forking, ⫝ \symbol{2ADD} nonforking, nor \(\pitchfork\), \(\topfork\) \pitchfork, \topforkU+03F6 ϶ \(\backepsilon\) \backepsilon Greek reversed lunate epsilon symbol, not belowU+220D ∍ \(\smallni\) \smallni small contains as member, nor below
U+2108 ℈ \(\scruple\) \scruple scruple, nor \(\ni\) \ni contains as memberU+2107 ℇ \(\Eulerconst\) \Eulerconst Euler constant, not belowU+03B5 ε \(\varepsilon\) \varepsilon Greek small letter epsilon, nor belowU+220A ∊ \(\smallin\) \smallin small element of, nor \(\in\) \inU+00B5 µ \(\micro\) \micro micro signU+03BC μ \(\mu\) \mu Greek small letter muU+210E ℎ \(\Planckconst\) \Planckconst Planck constant, not belowU+0068 h \(h\) h Latin small letter hU+039F Ο \(\Omicron\) \Omicron Greek capital letter omicron, not belowU+004F O \(O\) O Latin capital letter oU+03BF ο \(\omicron\) \omicron Greek small letter omicron, not belowU+006F o \(o\) o Latin small letter oここで、MathJax, KaTeX で Unicode のコードポイントの指定方法が異なり煩わしいので、以下を双方に定義しておくとよいかもしれない。
\newcommand{\symbol}[1]{\unicode{x#1}} % for MathJax
\newcommand{\symbol}[1]{\char"#1} % for KaTeX
混同しても許容範囲のグリフもあるが、閲覧環境のフォントによっても、ほとんど見分けがつかないグリフもあるので、特に「コピペ」などしたときには誤りを継承しないように注意されたい。
但し、TeX において例えば \(\epsilon\) \epsilon に対する \(\varepsilon\) \varepsilon などは \var* による命名により区別しやすいので、ここには載せていない。
以上のすべてを踏まえた上で、多少重なる事項はあるものの、稀に使い分けたり必要になったり明確に区別して使用したりするグリフを列挙しておく。使用する TeX システムで未定義グリフであれば必要に応じてマクロ等で活用されたい。
U+000A6 ¦ \(\brokenbar\) \newcommand{\brokenbar}{\htrm{¦}} |
U+0203E ‾ \(\textoverline\) \newcommand{\textoverline}{\htrm{‾}} |
U+000AE ® \(\registered\) \newcommand{\registered}{\htrm{®}} |
U+02117 ℗ \(\phonogram\) \newcommand{\phonogram}{\htrm{℗}} |
U+1F1AD 🆭 \(\maskwork\) \newcommand{\maskwork}{\htrm{🆭}} |
U+000A9 © \(\copyright\) \newcommand{\copyright}{\htrm{\symbol{00A9}}} |
U+1F12F 🄯 \(\copyleft\) \newcommand{\copyleft}{\htrm{🄯}} |
U+1F16D 🅭 \(\cc\) \newcommand{\cc}{\htrm{🅭}} |
U+1F16E 🅮 \(\ccPublicDomain\) \newcommand{\ccPublicDomain}{\htrm{🅮}} |
U+1F16F 🅯 \(\ccAttribution\) \newcommand{\ccAttribution}{\htrm{🅯}} |
U+02122 ™ \(\trademark\) \newcommand{\trademark}{\htrm{™}} |
U+02120 ℠ \(\servicemark\) \newcommand{\servicemark}{\htrm{℠}} |
U+1F16C 🅬 \(\raisedMR\) \newcommand{\raisedMR}{\htrm{🅬}} |
U+02116 № \(\numero\) \newcommand{\numero}{\htrm{№}} |
U+00025 % \(\percent\) \newcommand{\percent}{\htrm{\%}} |
U+02030 ‰ \(\perthousand\) \newcommand{\perthousand}{\htrm{‰}} |
U+02031 ‱ \(\pertenthousand\) \newcommand{\pertenthousand}{\htrm{‱}} |
U+02113 ℓ \(\ell\) \newcommand{\ell}{\htrm{ℓ}} |
U+000B5 µ \(\micro\) \newcommand{\micro}{\htrm{µ}} |
U+0211E ℞ \(\recipe\) \newcommand{\recipe}{\htrm{℞}} |
U+000B0 ° \(\degree\) \newcommand{\degree}{\htrm{°}} |
U+000C5 Å \(\Angstroem\) \newcommand{\Angstroem}{\htrm{Å}} |
U+02103 ℃ \(\celsius\) \newcommand{\celsius}{\htrm{℃}} |
U+02109 ℉ \(\fahrenheit\) \newcommand{\fahrenheit}{\htrm{℉}} |
U+000D8 Ø \(\O\) \newcommand{\O}{\htrm{Ø}} |
U+000F8 ø \(\o\) \newcommand{\o}{\htrm{ø}} |
U+00370 Ͱ \(\Heta\) \newcommand{\Heta}{\htit{Ͱ}} |
U+00371 ͱ \(\heta\) \newcommand{\heta}{\htit{ͱ}} |
U+00373 ͳ \(\arcSampi\) \newcommand{\arcSampi}{\htit{ͳ}} |
U+00373 ͳ \(\arcsampi\) \newcommand{\arcsampi}{\htit{ͳ}} |
U+00376 Ͷ \(\pamDigamma\) \newcommand{\pamDigamma}{\htit{Ͷ}} |
U+00377 ͷ \(\pamdigamma\) \newcommand{\pamdigamma}{\htit{ͷ}} |
U+0037F Ϳ \(\Yot\) \newcommand{\Yot}{\htit{Ϳ}} |
U+003A9 Ω \(\Ohm\) \newcommand{\Ohm}{\htrm{Ω}} |
U+003D8 Ϙ \(\Coppa\) \newcommand{\Coppa}{\htit{Ϙ}} |
U+003D8 Ϙ \(\Qoppa\) \newcommand{\Qoppa}{\htit{Ϙ}} |
U+003D8 Ϙ \(\varCoppa\) \newcommand{\varCoppa}{\htit{Ϙ}} |
U+003D9 ϙ \(\coppa\) \newcommand{\coppa}{\htit{ϙ}} |
U+003D9 ϙ \(\qoppa\) \newcommand{\qoppa}{\htit{ϙ}} |
U+003D9 ϙ \(\varcoppa\) \newcommand{\varcoppa}{\htit{ϙ}} |
U+003DA Ϛ \(\Stigma\) \newcommand{\Stigma}{\htit{Ϛ}} |
U+003DB ϛ \(\stigma\) \newcommand{\stigma}{\htit{ϛ}} |
U+003DC Ϝ \(\Digamma\) \newcommand{\Digamma}{\htit{Ϝ}} |
U+003DD ϝ \(\digamma\) \newcommand{\digamma}{\htit{ϝ}} |
U+003DE Ϟ \(\Koppa\) \newcommand{\Koppa}{\htit{Ϟ}} |
U+003DF ϟ \(\koppa\) \newcommand{\koppa}{\htit{ϟ}} |
U+003E0 Ϡ \(\Sampi\) \newcommand{\Sampi}{\htit{Ϡ}} |
U+003E1 ϡ \(\sampi\) \newcommand{\sampi}{\htit{ϡ}} |
U+003F3 ϳ \(\yot\) \newcommand{\yot}{\htit{ϳ}} |
U+003F7 Ϸ \(\Sho\) \newcommand{\Sho}{\htit{Ϸ}} |
U+003F8 ϸ \(\sho\) \newcommand{\sho}{\htit{ϸ}} |
U+003FA Ϻ \(\San\) \newcommand{\San}{\htit{Ϻ}} |
U+003FB ϻ \(\san\) \newcommand{\san}{\htit{ϻ}} |
U+00480 Ҁ \(\cyrillicKoppa\) \newcommand{\cyrillicKoppa}{\htit{Ҁ}} |
U+00481 ҁ \(\cyrillickoppa\) \newcommand{\cyrillickoppa}{\htit{ҁ}} |
U+02107 ℇ \(\Euler\) \newcommand{\Euler}{\htrm{ℇ}} |
U+02108 ℈ \(\scruple\) \newcommand{\scruple}{\htrm{℈}} |
U+02125 ℥ \(\Ounce\) \newcommand{\Ounce}{\htrm{℥}} |
U+02144 ⅄ \(\Yup\) \newcommand{\Yup}{\htit{⅄}} |
U+0214B ⅋ \(\invamp\) \newcommand{\invamp}{\htrm{⅋}} |
U+1D402 𝐂 \(\C\) \newcommand{\C}{\htrm{𝐂}} |
U+1D407 𝐇 \(\Hamilton\) \newcommand{\Hamilton}{\htrm{𝐇}} |
U+1D40D 𝐍 \(\N\) \newcommand{\N}{\htrm{𝐍}} |
U+1D40E 𝐎 \(\Octonion\) \newcommand{\Octonion}{\htrm{𝐎}} |
U+1D410 𝐐 \(\Q\) \newcommand{\Q}{\htrm{𝐐}} |
U+1D411 𝐑 \(\R\) \newcommand{\R}{\htrm{𝐑}} |
U+1D419 𝐙 \(\Z\) \newcommand{\Z}{\htrm{𝐙}} |
U+1D6E2 𝛢 \(\Alpha\) \newcommand{\Alpha}{\htit{𝛢}} |
U+1D6E3 𝛣 \(\Beta\) \newcommand{\Beta}{\htit{𝛣}} |
U+1D6E6 𝛦 \(\Epsilon\) \newcommand{\Epsilon}{\htit{𝛦}} |
U+1D6E7 𝛧 \(\Zeta\) \newcommand{\Zeta}{\htit{𝛧}} |
U+1D6E8 𝛨 \(\Eta\) \newcommand{\Eta}{\htit{𝛨}} |
U+1D6EA 𝛪 \(\Iota\) \newcommand{\Iota}{\htit{𝛪}} |
U+1D6EB 𝛫 \(\Kappa\) \newcommand{\Kappa}{\htit{𝛫}} |
U+1D6ED 𝛭 \(\Mu\) \newcommand{\Mu}{\htit{𝛭}} |
U+1D6EE 𝛮 \(\Nu\) \newcommand{\Nu}{\htit{𝛮}} |
U+1D6F0 𝛰 \(\Omicron\) \newcommand{\Omicron}{\htit{𝛰}} |
U+1D6F2 𝛲 \(\Rho\) \newcommand{\Rho}{\htit{𝛲}} |
U+1D6F5 𝛵 \(\Tau\) \newcommand{\Tau}{\htit{𝛵}} |
U+1D6F8 𝛸 \(\Chi\) \newcommand{\Chi}{\htit{𝛸}} |
ここでは、以下のマクロでフォントのスタイルをそれぞれ明示している。
\newcommand{\htit}[1]{\style{ font-style: italic; }{#1}}
\newcommand{\htrm}[1]{\style{ font-style: normal; }{#1}}
MathJax よりも KaTeX の方が軽快であるし、コマンドのサポートも充実していると思っていたが、改めて KaTeX の方が優れていると感じている。
しかし、よく比較してみると MathJax の方が手堅く実装されており一日の長が確かにある、という印象も得られている。
そもそも、例えば、Pages でたまたま上手く表現できていた数式をそのまま TeX などにペーストしても、意図した通りにならないことが往々にしてあり得ることに注意すべきだ。
最後に、MathJax, KaTeX ともに本稿を執るにあたって大変な数のマクロを定義している。意図した通りに定義されているのか、定義を敢えて外してあるのか、すべてを確認するために緑色で実際に定義されているマクロをマウスホバーでポップアップするようにしておいたが、本稿の記述と敢えて多少異なっている箇所もあるかもしれない。
http://gva.noekeon.org/blahtexml/blahtexml-0.9-doc.pdf, 2010. Pages 他で内部で使用されている.https://ftp.kddilabs.jp/CTAN/macros/unicodetex/latex/unicode-math/unimath-symbols.pdf, 2020.https://ftp.yz.yamagata-u.ac.jp/pub/CTAN/fonts/amsfonts/doc/amsfndoc.pdf, AMS, 2002.https://docs.mathjax.org/en/v2.7-latest/tex.html, 2018.https://katex.org/docs/supported.html, 2021.https://meta.wikimedia.org/wiki/Help:Displaying_a_formula/ja, 2021 閲覧.https://www.latex-project.org/help/documentation/short-math-guide_jpn.pdf, 2018.https://www.aihara.co.jp/~taiji/lecture/TeX-commands.pdf, 2021.https://www.icloud.com/pages/0sT9BCSfmlfgVik79iTMHQwCA#TipsPagesTeX, 2021.https://www.aihara.co.jp/~taiji/unix-tips/, 2021. 左肩上付きの数式について.https://www.aihara.co.jp/~taiji/browser-security/js/converters/index.ja.html, 2021. 単位換算について.https://www.aihara.co.jp/~taiji/browser-security/js/glyphs.html, 2021.https://japanknowledge.com/contents/common/si.html, JapanKnowledge, 2021.https://docs.mathjax.org/en/latest/input/tex/extensions/mathtools.html#mathtools-commands, 2021.https://texdoc.org/serve/mathtools.pdf/0, 2021.https://docs.mathjax.org/en/latest/input/tex/extensions/textmacros.html, 2021.https://books.google.co.jp/books?id=iX9MAQAAQBAJ, 2003.https://ftp.yz.yamagata-u.ac.jp/pub/CTAN/macros/latex/contrib/tensor/tensor.pdf, 2004.https://ftp.kddilabs.jp/CTAN/macros/latex/contrib/texvc/texvc.pdf, 2018.http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf, 2021.output/chtml/fonts/tex.ts,” https://github.com/mathjax/MathJax-src/blob/master/ts/output/chtml/fonts/tex.ts, 2021 閲覧.https://ctan.org/tex-archive/fonts/lm-math, 2021 閲覧.https://docs.microsoft.com/en-us/typography/font-list/cambria, 2021 閲覧.https://docs.microsoft.com/en-us/typography/font-list/cambria-math, 2021 閲覧.https://fonts.google.com/specimen/Caladea, 2021 閲覧.https://ctan.org/pkg/stix/, 2021 閲覧.https://ctan.org/pkg/stix2-otf/, 2021 閲覧.https://ctan.org/pkg/xits/, 2021 閲覧.https://ctan.org/pkg/tex-gyre/, 2021 閲覧.